{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,21]],"date-time":"2024-09-21T11:58:21Z","timestamp":1726919901618},"publisher-location":"Cham","reference-count":13,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030009335"},{"type":"electronic","value":"9783030009342"}],"license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-3-030-00934-2_23","type":"book-chapter","created":{"date-parts":[[2018,9,12]],"date-time":"2018-09-12T19:24:33Z","timestamp":1536780273000},"page":"201-209","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":61,"title":["Adversarial Domain Adaptation for\u00a0Classification of Prostate Histopathology Whole-Slide Images"],"prefix":"10.1007","author":[{"given":"Jian","family":"Ren","sequence":"first","affiliation":[]},{"given":"Ilker","family":"Hacihaliloglu","sequence":"additional","affiliation":[]},{"given":"Eric A.","family":"Singer","sequence":"additional","affiliation":[]},{"given":"David J.","family":"Foran","sequence":"additional","affiliation":[]},{"given":"Xin","family":"Qi","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,9,26]]},"reference":[{"issue":"5","key":"23_CR1","doi-asserted-by":"publisher","first-page":"E359","DOI":"10.1002\/ijc.29210","volume":"136","author":"J Ferlay","year":"2015","unstructured":"Ferlay, J.: Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136(5), E359\u2013E386 (2015)","journal-title":"Int. J. Cancer"},{"issue":"3","key":"23_CR2","doi-asserted-by":"publisher","first-page":"428","DOI":"10.1016\/j.eururo.2015.06.046","volume":"69","author":"JI Epstein","year":"2016","unstructured":"Epstein, J.I., Zelefsky, M.J., Sjoberg, D.D., et al.: A contemporary prostate cancer grading system: a validated alternative to the Gleason score. Eur. Urol. 69(3), 428\u2013435 (2016)","journal-title":"Eur. Urol."},{"key":"23_CR3","doi-asserted-by":"crossref","unstructured":"Hou, L., Samaras, D., Kurc, T.M., Gao, Y., Davis, J.E., Saltz, J.H.: Patch-based convolutional neural network for whole slide tissue image classification. In: CVPR, pp. 2424\u20132433 (2016)","DOI":"10.1109\/CVPR.2016.266"},{"key":"23_CR4","doi-asserted-by":"publisher","first-page":"26286","DOI":"10.1038\/srep26286","volume":"6","author":"G Litjens","year":"2016","unstructured":"Litjens, G., et al.: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci. Rep. 6, 26286 (2016)","journal-title":"Sci. Rep."},{"key":"23_CR5","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"581","DOI":"10.1007\/978-3-319-24553-9_71","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","author":"S Ot\u00e1lora","year":"2015","unstructured":"Ot\u00e1lora, S., et al.: Combining unsupervised feature learning and Riesz Wavelets for histopathology image representation: application to identifying anaplastic Medulloblastoma. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 581\u2013588. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24553-9_71"},{"key":"23_CR6","doi-asserted-by":"publisher","first-page":"85","DOI":"10.1016\/j.neunet.2014.09.003","volume":"61","author":"J Schmidhuber","year":"2015","unstructured":"Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85\u2013117 (2015)","journal-title":"Neural Netw."},{"key":"23_CR7","doi-asserted-by":"crossref","unstructured":"Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: CVPR, vol. 1, p. 4 (2017)","DOI":"10.1109\/CVPR.2017.316"},{"issue":"59","key":"23_CR8","first-page":"1","volume":"17","author":"Y Ganin","year":"2016","unstructured":"Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(59), 1\u201335 (2016)","journal-title":"J. Mach. Learn. Res."},{"key":"23_CR9","unstructured":"Goodfellow, I., et al.: Generative adversarial nets. In: NIPS, pp. 2672\u20132680 (2014)"},{"issue":"7471","key":"23_CR10","doi-asserted-by":"publisher","first-page":"333","DOI":"10.1038\/nature12634","volume":"502","author":"C Kandoth","year":"2013","unstructured":"Kandoth, C., et al.: Mutational landscape and significance across 12 major cancer types. Nature 502(7471), 333 (2013)","journal-title":"Nature"},{"key":"23_CR11","doi-asserted-by":"crossref","unstructured":"Jimenez-del Toroab, O., et al.: Convolutional neural networks for an automatic classification of prostate tissue slides with high-grade Gleason score. In: Proceedings of SPIE, vol. 10140 (2017). 101400O\u20131","DOI":"10.1117\/12.2255710"},{"key":"23_CR12","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1097\u20131105 (2012)"},{"issue":"1","key":"23_CR13","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1186\/1471-2288-13-91","volume":"13","author":"MW Fagerland","year":"2013","unstructured":"Fagerland, M.W., Lydersen, S., Laake, P.: The McNemar test for binary matched-pairs data: mid-p and asymptotic are better than exact conditional. BMC Med. Res. Methodol. 13(1), 91 (2013)","journal-title":"BMC Med. Res. Methodol."}],"container-title":["Lecture Notes in Computer Science","Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2018"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-00934-2_23","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,12]],"date-time":"2023-09-12T20:10:04Z","timestamp":1694549404000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-00934-2_23"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018]]},"ISBN":["9783030009335","9783030009342"],"references-count":13,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-00934-2_23","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2018]]},"assertion":[{"value":"26 September 2018","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MICCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Medical Image Computing and Computer-Assisted Intervention","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Granada","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2018","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 September 2018","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 September 2018","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miccai2018","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.miccai2018.org\/en\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}