{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T18:44:19Z","timestamp":1725993859203},"publisher-location":"Cham","reference-count":20,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030005320"},{"type":"electronic","value":"9783030005337"}],"license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-3-030-00533-7_21","type":"book-chapter","created":{"date-parts":[[2018,10,2]],"date-time":"2018-10-02T02:38:28Z","timestamp":1538447908000},"page":"264-276","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":8,"title":["The Importance of Component-Wise Stochasticity in Particle Swarm Optimization"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0568-8700","authenticated-orcid":false,"given":"Elre T.","family":"Oldewage","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0242-3539","authenticated-orcid":false,"given":"Andries P.","family":"Engelbrecht","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7860-0650","authenticated-orcid":false,"given":"Christopher W.","family":"Cleghorn","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,10,3]]},"reference":[{"key":"21_CR1","doi-asserted-by":"publisher","unstructured":"Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: Proceedings of the IEEE Swarm Intelligence Symposium, pp. 120\u2013127. IEEE Computer Society (2007). https:\/\/doi.org\/10.1109\/SIS.2007.368035","DOI":"10.1109\/SIS.2007.368035"},{"key":"21_CR2","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s11721-017-0141-x","volume":"12","author":"CW Cleghorn","year":"2017","unstructured":"Cleghorn, C.W., Engelbrecht, A.P.: Particle swarm stability: a theoretical extension using the non-stagnate distribution assumption. Swarm Intell. 12, 1\u201322 (2017). https:\/\/doi.org\/10.1007\/s11721-017-0141-x","journal-title":"Swarm Intell."},{"issue":"1","key":"21_CR3","doi-asserted-by":"publisher","first-page":"58","DOI":"10.1109\/4235.985692","volume":"6","author":"M Clerc","year":"2002","unstructured":"Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58\u201373 (2002). https:\/\/doi.org\/10.1109\/4235.985692","journal-title":"IEEE Trans. Evol. Comput."},{"key":"21_CR4","doi-asserted-by":"publisher","unstructured":"Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39\u201343, October 1995. https:\/\/doi.org\/10.1109\/MHS.1995.494215","DOI":"10.1109\/MHS.1995.494215"},{"key":"21_CR5","doi-asserted-by":"publisher","unstructured":"Engelbrecht, A.P.: Fitness function evaluations: a fair stopping condition? In: Proceedings of the IEEE Symposium on Swarm Intelligence, pp. 1\u20138, December 2014. https:\/\/doi.org\/10.1109\/SIS.2014.7011793","DOI":"10.1109\/SIS.2014.7011793"},{"key":"21_CR6","doi-asserted-by":"publisher","unstructured":"Engelbrecht, A.: Particle swarm optimization: global best or local best? In: Proceedings of the BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence (BRICS-CCI CBIC), pp. 124\u2013135, September 2013. https:\/\/doi.org\/10.1109\/BRICS-CCI-CBIC.2013.31","DOI":"10.1109\/BRICS-CCI-CBIC.2013.31"},{"key":"21_CR7","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1016\/j.neucom.2013.03.074","volume":"137","author":"F Han","year":"2014","unstructured":"Han, F., Liu, Q.: A diversity-guided hybrid particle swarm optimization based on gradient search. Neurocomputing 137, 234\u2013240 (2014). https:\/\/doi.org\/10.1016\/j.neucom.2013.03.074 . Advanced Intelligent Computing Theories and Methodologies","journal-title":"Neurocomputing"},{"issue":"2","key":"21_CR8","first-page":"150","volume":"4","author":"M Jamil","year":"2013","unstructured":"Jamil, M., Yang, X.S.: A literature survey of benchmark functions for global optimization problems. Int. J. Math. Model. Numer. Optim. 4(2), 150\u2013194 (2013)","journal-title":"Int. J. Math. Model. Numer. Optim."},{"key":"21_CR9","doi-asserted-by":"crossref","unstructured":"Malan, K., Engelbrecht, A.P.: Algorithm comparisons and the significance of population size. In: Proceedings of the IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 914\u2013920 (2008)","DOI":"10.1109\/CEC.2008.4630905"},{"key":"21_CR10","unstructured":"Oldewage, E.: The perils of particle swarm optimisation in high dimensional problem spaces. Master\u2019s thesis, University of Pretoria, Pretoria, South Africa (2018)"},{"key":"21_CR11","doi-asserted-by":"publisher","unstructured":"Olorunda, O., Engelbrecht, A.P.: Measuring exploration\/exploitation in particle swarms using swarm diversity. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1128\u20131134, June 2008. https:\/\/doi.org\/10.1109\/CEC.2008.4630938","DOI":"10.1109\/CEC.2008.4630938"},{"issue":"1","key":"21_CR12","doi-asserted-by":"publisher","first-page":"264","DOI":"10.1137\/050630416","volume":"28","author":"CC Paige","year":"2006","unstructured":"Paige, C.C., Rozlozn\u00edk, M., Strakos, Z.: Modified Gram-Schmidt (MGS), least squares, and backward stability of MGS-GMRES. Soc. Ind. Appl. Math. J. Matrix Anal. Appl. 28(1), 264\u2013284 (2006). https:\/\/doi.org\/10.1137\/050630416","journal-title":"Soc. Ind. Appl. Math. J. Matrix Anal. Appl."},{"key":"21_CR13","doi-asserted-by":"publisher","unstructured":"Pandey, S., Wu, L., Guru, S.M., Buyya, R.: A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments. In: 2010 24th IEEE International Conference on Advanced Information Networking and Applications, pp. 400\u2013407, April 2010. https:\/\/doi.org\/10.1109\/AINA.2010.31","DOI":"10.1109\/AINA.2010.31"},{"key":"21_CR14","unstructured":"Paquet, U., Engelbrecht, A.P.: Particle swarms for linearly constrained optimisation. Fundam. Inform. 76(1\u20132), 147\u2013170 (2007). http:\/\/dl.acm.org\/citation.cfm?id=1232695.1232705"},{"key":"21_CR15","volume-title":"Linear Algebra: A Modern Introduction","author":"D Poole","year":"2011","unstructured":"Poole, D.: Linear Algebra: A Modern Introduction, 3rd edn. Cengage Learning, Canada (2011)","edition":"3"},{"key":"21_CR16","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"109","DOI":"10.1007\/978-3-642-28493-9_13","volume-title":"Intelligent Information and Database Systems","author":"F Ramezani","year":"2012","unstructured":"Ramezani, F., Lotfi, S.: The modified differential evolution algorithm (MDEA). In: Pan, J.S., Chen, S.M., Nguyen, N.T. (eds.) ACIIDS 2012. LNCS, vol. 7198, pp. 109\u2013118. Springer, Heidelberg (2012). https:\/\/doi.org\/10.1007\/978-3-642-28493-9_13"},{"key":"21_CR17","doi-asserted-by":"publisher","unstructured":"Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 69\u201373, May 1998. https:\/\/doi.org\/10.1109\/ICEC.1998.699146","DOI":"10.1109\/ICEC.1998.699146"},{"issue":"4","key":"21_CR18","doi-asserted-by":"publisher","first-page":"1232","DOI":"10.1109\/59.898095","volume":"15","author":"H Yoshida","year":"2000","unstructured":"Yoshida, H., Kawata, K., Fukuyama, Y., Takayama, S., Nakanishi, Y.: A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Trans. Power Syst. 15(4), 1232\u20131239 (2000). https:\/\/doi.org\/10.1109\/59.898095","journal-title":"IEEE Trans. Power Syst."},{"key":"21_CR19","doi-asserted-by":"publisher","unstructured":"Zahara, E., Kao, Y.T., Su, J.R.: Enhancing particle swarm optimization with gradient information. In: 2009 Fifth International Conference on Natural Computation, vol. 3, pp. 251\u2013254, August 2009. https:\/\/doi.org\/10.1109\/ICNC.2009.711","DOI":"10.1109\/ICNC.2009.711"},{"key":"21_CR20","doi-asserted-by":"crossref","unstructured":"van Zyl, E., Engelbrecht, A.: Group-based stochastic scaling for PSO velocities. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pp. 1862\u20131868, July 2016","DOI":"10.1109\/CEC.2016.7744015"}],"container-title":["Lecture Notes in Computer Science","Swarm Intelligence"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-00533-7_21","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,10,25]],"date-time":"2019-10-25T02:39:40Z","timestamp":1571971180000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-00533-7_21"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018]]},"ISBN":["9783030005320","9783030005337"],"references-count":20,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-00533-7_21","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2018]]},"assertion":[{"value":"ANTS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Swarm Intelligence","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Rome","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2018","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 October 2018","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"31 October 2018","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"antsw2018","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/iridia.ulb.ac.be\/ants2018\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}