{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T17:57:54Z","timestamp":1725991074207},"publisher-location":"Cham","reference-count":9,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030001285"},{"type":"electronic","value":"9783030001292"}],"license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-3-030-00129-2_1","type":"book-chapter","created":{"date-parts":[[2018,9,11]],"date-time":"2018-09-11T12:35:39Z","timestamp":1536669339000},"page":"3-11","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":17,"title":["Deep Learning Super-Resolution Enables Rapid Simultaneous Morphological and Quantitative Magnetic Resonance Imaging"],"prefix":"10.1007","author":[{"given":"Akshay","family":"Chaudhari","sequence":"first","affiliation":[]},{"given":"Zhongnan","family":"Fang","sequence":"additional","affiliation":[]},{"given":"Jin","family":"Hyung Lee","sequence":"additional","affiliation":[]},{"given":"Garry","family":"Gold","sequence":"additional","affiliation":[]},{"given":"Brian","family":"Hargreaves","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,9,12]]},"reference":[{"key":"1_CR1","doi-asserted-by":"publisher","first-page":"1328","DOI":"10.1002\/jmri.25883","volume":"47","author":"AS Chaudhari","year":"2017","unstructured":"Chaudhari, A.S., et al.: Five-minute knee MRI for simultaneous morphometry and T$$_2$$ relaxometry of cartilage and meniscus and for semiquantitative radiological assessment using double-echo in steady-state at 3T. J. Magn. Reson. Imaging 47, 1328\u20131341 (2017)","journal-title":"J. Magn. Reson. Imaging"},{"key":"1_CR2","doi-asserted-by":"publisher","first-page":"355","DOI":"10.1055\/s-2004-861764","volume":"8","author":"TJ Mosher","year":"2004","unstructured":"Mosher, T.J., Dardzinski, B.J.: Cartilage MRI T$$_2$$ relaxation time mapping: overview and applications. Semin. Musculoskelet. Radiol. 8, 355\u2013368 (2004)","journal-title":"Semin. Musculoskelet. Radiol."},{"issue":"12","key":"1_CR3","doi-asserted-by":"publisher","first-page":"1433","DOI":"10.1016\/j.joca.2008.06.016","volume":"16","author":"CG Peterfy","year":"2008","unstructured":"Peterfy, C.G., Schneider, E., Nevitt, M.: The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage 16(12), 1433\u20131441 (2008)","journal-title":"Osteoarthritis Cartilage"},{"key":"1_CR4","doi-asserted-by":"publisher","first-page":"63","DOI":"10.1016\/j.mri.2016.12.018","volume":"38","author":"B Sveinsson","year":"2017","unstructured":"Sveinsson, B., Chaudhari, A., Gold, G., Hargreaves, B.: A simple analytic method for estimating T2 in the knee from DESS. Magn. Reson. Imaging 38, 63\u201370 (2017)","journal-title":"Magn. Reson. Imaging"},{"issue":"October","key":"1_CR5","first-page":"1","volume":"25","author":"UD Monu","year":"2016","unstructured":"Monu, U.D., Jordan, C.D., Samuelson, B.L., Hargreaves, B.A., Gold, G.E., McWalter, E.J.: Cluster analysis of quantitative MRI T$$_2$$ and T$$_{1\\rho }$$ relaxation times of cartilage identifies differences between healthy and ACL-injured individuals at 3T. Osteoarthritis Cartilage 25(October), 1\u20138 (2016)","journal-title":"Osteoarthritis Cartilage"},{"doi-asserted-by":"crossref","unstructured":"Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646\u20131654 (2016)","key":"1_CR6","DOI":"10.1109\/CVPR.2016.182"},{"key":"1_CR7","doi-asserted-by":"publisher","first-page":"946","DOI":"10.1016\/j.measurement.2013.10.026","volume":"47","author":"YH Wang","year":"2014","unstructured":"Wang, Y.H., Qiao, J., Li, J.B., Fu, P., Chu, S.C., Roddick, J.F.: Sparse representation-based MRI super-resolution reconstruction. Measurement 47, 946\u2013953 (2014)","journal-title":"Measurement"},{"doi-asserted-by":"crossref","unstructured":"Chaudhari, A.S., et al.: Super-resolution musculoskeletal MRI using deep learning. Magn. Reson. Med. (2018)","key":"1_CR8","DOI":"10.1002\/mrm.27178"},{"issue":"10","key":"1_CR9","doi-asserted-by":"publisher","first-page":"1474","DOI":"10.1016\/j.joca.2013.07.012","volume":"21","author":"T Baum","year":"2013","unstructured":"Baum, T., Joseph, G.B., Karampinos, D.C., Jungmann, P.M., Link, T.M., Bauer, J.S.: Cartilage and meniscal T2 relaxation time as non-invasive biomarker for knee osteoarthritis and cartilage repair procedures. Osteoarthritis Cartilage\/OARS 21(10), 1474\u201384 (2013)","journal-title":"Osteoarthritis Cartilage\/OARS"}],"container-title":["Lecture Notes in Computer Science","Machine Learning for Medical Image Reconstruction"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-00129-2_1","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,10]],"date-time":"2023-09-10T20:02:34Z","timestamp":1694376154000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-00129-2_1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018]]},"ISBN":["9783030001285","9783030001292"],"references-count":9,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-00129-2_1","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2018]]},"assertion":[{"value":"12 September 2018","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MLMIR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Machine Learning for Medical Image Reconstruction","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Granada","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2018","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 September 2018","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 September 2018","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"mlmir2018","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/sites.google.com\/view\/mlmir2018\/home","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}