{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T21:00:11Z","timestamp":1726002011985},"publisher-location":"New York, NY","reference-count":15,"publisher":"Springer New York","isbn-type":[{"type":"print","value":"9781461482666"},{"type":"electronic","value":"9781461482659"}],"license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-1-4614-8265-9_1124","type":"book-chapter","created":{"date-parts":[[2018,12,6]],"date-time":"2018-12-06T12:37:57Z","timestamp":1544099877000},"page":"4478-4484","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Visual Clustering"],"prefix":"10.1007","author":[{"given":"Mike","family":"Sips","sequence":"first","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,12,7]]},"reference":[{"issue":"4","key":"1124_CR22318","doi-asserted-by":"publisher","first-page":"448","DOI":"10.1109\/TKDE.2004.1269669","volume":"16","author":"CC Aggarwal","year":"2004","unstructured":"Aggarwal CC. A human-computer interactive method for projected clustering. IEEE Trans Knowl Data Eng. 2004;16(4):448\u201360.","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"1124_CR22319","doi-asserted-by":"crossref","unstructured":"Ankerst M, Breunig MM, Kriegel HP, and Sander J. OPTICS: ordering points to identify the clustering structure. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1999. p. 49\u201360.","DOI":"10.1145\/304181.304187"},{"issue":"1","key":"1124_CR22320","doi-asserted-by":"publisher","first-page":"128","DOI":"10.1137\/0906011","volume":"6","author":"D Asimov","year":"1985","unstructured":"Asimov D. The grand tour: a tool for viewing multidimensional data. SIAM J Sci Stat Comp. 1985;6(1):128\u201343.","journal-title":"SIAM J Sci Stat Comp"},{"key":"1124_CR22321","doi-asserted-by":"publisher","DOI":"10.1007\/978-0-387-71762-3","volume-title":"Interactive and dynamic graphics for data analysis \u2013 with R and Ggobi","author":"D Cook","year":"2007","unstructured":"Cook D, Swayne DF. Interactive and dynamic graphics for data analysis \u2013 with R and Ggobi. New York: Springer Science and Business Media; 2007."},{"key":"1124_CR22322","unstructured":"Dhillon IS, Modha DS, Spangler WS. Visualizing class structure of multidimensional data. In: Proceedings of the 30th Symposium on the Interface: Computing Science and Statistics; 1998. p. 488\u201393."},{"key":"1124_CR22323","unstructured":"Ester M, Kriegel HP, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining; 1996. p. 226\u201331."},{"issue":"4","key":"1124_CR22324","doi-asserted-by":"publisher","first-page":"232","DOI":"10.1057\/palgrave.ivs.9500053","volume":"2","author":"D Guo","year":"2003","unstructured":"Guo D. Coordinating computational and visual approaches for interactive feature selection and multivariate clustering. Inf Vis. 2003;2(4):232\u201346.","journal-title":"Inf Vis"},{"key":"1124_CR22325","unstructured":"Hinneburg A, Keim DA. Optimal grid-clustering: towards breaking the curse of dimensionality in high-dimensional clustering. In: Proceedings of the 25th International Conference on Very Large Data Bases; 1999. p. 506\u201317."},{"issue":"5","key":"1124_CR22326","doi-asserted-by":"publisher","first-page":"22","DOI":"10.1109\/38.788795","volume":"19","author":"A Hinneburg","year":"1999","unstructured":"Hinneburg A, Keim DA, Wawryniuk M. HD-Eye: visual mining of high-dimensional data. IEEE Comput Graph Appl. 1999;19(5):22\u201331.","journal-title":"IEEE Comput Graph Appl"},{"key":"1124_CR22327","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-56927-2","volume-title":"Self-organizing maps","author":"T Kohonen","year":"2001","unstructured":"Kohonen T. Self-organizing maps. third ed. Berlin: Springer Series in Information Science; 2001.","edition":"third"},{"issue":"4","key":"1124_CR22328","doi-asserted-by":"publisher","first-page":"459","DOI":"10.1109\/TVCG.2004.17","volume":"10","author":"Y Koren","year":"2004","unstructured":"Koren Y, Carmel L. Robust linear dimensionality reduction. IEEE Trans Vis Comput Graph. 2004;10(4):459\u201370.","journal-title":"IEEE Trans Vis Comput Graph"},{"issue":"3","key":"1124_CR22329","doi-asserted-by":"publisher","first-page":"548","DOI":"10.1109\/72.377962","volume":"6","author":"M Kraaijveld","year":"1995","unstructured":"Kraaijveld M, Mao J, Jain A. A nonlinear projection method based on kohonen\u2019s topology preserving maps. IEEE Trans Neural Netw. 1995;6(3):548\u201359.","journal-title":"IEEE Trans Neural Netw"},{"key":"1124_CR22330","doi-asserted-by":"crossref","unstructured":"Nam EJ, Han Y, Mueller K, Zelenyuk A, Imre D. ClusterSculptor: a visual analytics tool for high-dimensional data. In: IEEE Symposium on Visual Analytics Science and Technology; 2007. p. 75\u201382.","DOI":"10.1109\/VAST.2007.4388999"},{"issue":"3","key":"1124_CR22331","doi-asserted-by":"publisher","first-page":"111","DOI":"10.3233\/IDA-1999-3203","volume":"2","author":"J Vesanto","year":"1999","unstructured":"Vesanto J. Som-based data visualization methods. Intell Data Anal. 1999;2(3):111\u201326.","journal-title":"Intell Data Anal"},{"key":"1124_CR22332","doi-asserted-by":"crossref","unstructured":"Yang L. Interactive exploration of very large relational datasets through 3D dynamic projections. In: Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2000. p. 236\u201343.","DOI":"10.1145\/347090.347134"}],"container-title":["Encyclopedia of Database Systems"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-1-4614-8265-9_1124","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,6,1]],"date-time":"2020-06-01T22:35:46Z","timestamp":1591050946000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-1-4614-8265-9_1124"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018]]},"ISBN":["9781461482666","9781461482659"],"references-count":15,"URL":"https:\/\/doi.org\/10.1007\/978-1-4614-8265-9_1124","relation":{},"subject":[],"published":{"date-parts":[[2018]]},"assertion":[{"value":"7 December 2018","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}}]}}