{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T19:41:21Z","timestamp":1726256481312},"publisher-location":"Cham","reference-count":10,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9781071639887"},{"type":"electronic","value":"9781071639894"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-1-0716-3989-4_57","type":"book-chapter","created":{"date-parts":[[2024,5,16]],"date-time":"2024-05-16T08:02:38Z","timestamp":1715846558000},"page":"479-482","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["scMulan: A Multitask Generative Pre-Trained Language Model for Single-Cell Analysis"],"prefix":"10.1007","author":[{"given":"Haiyang","family":"Bian","sequence":"first","affiliation":[]},{"given":"Yixin","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Xiaomin","family":"Dong","sequence":"additional","affiliation":[]},{"given":"Chen","family":"Li","sequence":"additional","affiliation":[]},{"given":"Minsheng","family":"Hao","sequence":"additional","affiliation":[]},{"given":"Sijie","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Jinyi","family":"Hu","sequence":"additional","affiliation":[]},{"given":"Maosong","family":"Sun","sequence":"additional","affiliation":[]},{"given":"Lei","family":"Wei","sequence":"additional","affiliation":[]},{"given":"Xuegong","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,5,17]]},"reference":[{"key":"57_CR1","unstructured":"Bommasani, R., et al.: On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258. (2021)"},{"key":"57_CR2","first-page":"9","volume":"1","author":"A Radford","year":"2019","unstructured":"Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Others: language models are unsupervised multitask learners. OpenAI Blog. 1, 9 (2019)","journal-title":"OpenAI Blog."},{"key":"57_CR3","first-page":"1877","volume":"33","author":"T Brown","year":"2020","unstructured":"Brown, T., et al.: Others: language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877\u20131901 (2020)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"57_CR4","first-page":"5485","volume":"21","author":"C Raffel","year":"2020","unstructured":"Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21, 5485\u20135551 (2020)","journal-title":"J. Mach. Learn. Res."},{"key":"57_CR5","doi-asserted-by":"publisher","first-page":"852","DOI":"10.1038\/s42256-022-00534-z","volume":"4","author":"F Yang","year":"2022","unstructured":"Yang, F., et al.: ScBERT as a large-scale pretrained deep language model for cell type annotation of single-cell RNA-seq data. Nat. Mach. Intell. 4, 852\u2013866 (2022)","journal-title":"Nat. Mach. Intell."},{"key":"57_CR6","doi-asserted-by":"crossref","unstructured":"Cui, H., Wang, C., Maan, H., Pang, K., Luo, F., Wang, B.: scGPT: towards building a foundation model for single-cell multi-omics using generative AI (2023). https:\/\/www.biorxiv.org\/content\/10.1101\/2023.04.30.538439v2","DOI":"10.1101\/2023.04.30.538439"},{"key":"57_CR7","doi-asserted-by":"crossref","unstructured":"Hao, M., et al.: Large scale foundation model on single-cell transcriptomics (2023). https:\/\/www.biorxiv.org\/content\/10.1101\/2023.05.29.542705v1","DOI":"10.1101\/2023.05.29.542705"},{"issue":"7965","key":"57_CR8","doi-asserted-by":"publisher","first-page":"616","DOI":"10.1038\/s41586-023-06139-9","volume":"618","author":"CV Theodoris","year":"2023","unstructured":"Theodoris, C.V., et al.: Transfer learning enables predictions in network biology. Nature 618(7965), 616\u2013624 (2023). https:\/\/doi.org\/10.1038\/s41586-023-06139-9","journal-title":"Nature"},{"key":"57_CR9","doi-asserted-by":"publisher","DOI":"10.1101\/2023.10.16.561085","author":"KZ Kedzierska","year":"2023","unstructured":"Kedzierska, K.Z., Crawford, L., Amini, A.P., Lu, A.X.: Assessing the limits of zero-shot foundation models in single-cell biology. Bioinformatics (2023). https:\/\/doi.org\/10.1101\/2023.10.16.561085","journal-title":"Bioinformatics"},{"key":"57_CR10","doi-asserted-by":"crossref","unstructured":"Chen, S., et al.: hECA: the cell-centric assembly of a cell atlas. Iscience 25 (2022)","DOI":"10.1016\/j.isci.2022.104318"}],"container-title":["Lecture Notes in Computer Science","Research in Computational Molecular Biology"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-1-0716-3989-4_57","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,5,16]],"date-time":"2024-05-16T08:07:10Z","timestamp":1715846830000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-1-0716-3989-4_57"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9781071639887","9781071639894"],"references-count":10,"URL":"https:\/\/doi.org\/10.1007\/978-1-0716-3989-4_57","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"17 May 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"RECOMB","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Research in Computational Molecular Biology","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Cambridge, MA","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"USA","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 April 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2 May 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"recomb2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/recomb.org\/recomb2024\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}