{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,19]],"date-time":"2025-03-19T14:49:49Z","timestamp":1742395789881},"publisher-location":"Berlin, Heidelberg","reference-count":33,"publisher":"Springer Berlin Heidelberg","isbn-type":[{"type":"print","value":"9783540417736"},{"type":"electronic","value":"9783540452447"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2001]]},"DOI":"10.1007\/3-540-45244-3_11","type":"book-chapter","created":{"date-parts":[[2007,6,7]],"date-time":"2007-06-07T00:09:07Z","timestamp":1181174947000},"page":"133-146","source":"Crossref","is-referenced-by-count":24,"title":["AUTOCLUST+: Automatic Clustering of Point-Data Sets in the Presence of Obstacles"],"prefix":"10.1007","author":[{"given":"Vladimir","family":"Estivill-Castro","sequence":"first","affiliation":[]},{"given":"Ickjai","family":"Lee","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2001,3,16]]},"reference":[{"key":"11_CR1","doi-asserted-by":"publisher","first-page":"803","DOI":"10.2307\/2532201","volume":"49","author":"J. D. Banfield","year":"1993","unstructured":"J. D. Banfield and A. E. Raftery. Model-based Gaussian and Non-Gaussian Clustering. Biometrics, 49:803\u2013821, 1993.","journal-title":"Biometrics"},{"key":"11_CR2","first-page":"201","volume-title":"Computational Techniques and Applications: CTAC97","author":"C. Eldershaw","year":"1997","unstructured":"C. Eldershaw and M. Hegland. Cluster Analysis using Triangulation. In B. J. Noye, M. D. Teubner, and A. W. Gill, editors, Computational Techniques and Applications: CTAC97, pages 201\u2013208. World Scientific, Singapore, 1997."},{"key":"11_CR3","unstructured":"M. Ester, M. P. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, pages 226\u2013231, 1996."},{"key":"11_CR4","doi-asserted-by":"crossref","unstructured":"V. Estivill-Castro. Hybrid genetic algorithms are better for spatial clustering. In Proc. 6th Pacific Rim Intern. Conf. Artificial Intelligence PRICAI 2000, Melbourne, 2000. Springer-Verlag Lecture Notes in AI, to appear.","DOI":"10.1007\/3-540-44533-1_44"},{"key":"11_CR5","doi-asserted-by":"crossref","unstructured":"V. Estivill-Castro and M. E. Houle. Robust Clustering of Large Geo-referenced Data Sets. In Proceedings of the 3rd Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 327\u2013337, 1999.","DOI":"10.1007\/3-540-48912-6_44"},{"key":"11_CR6","unstructured":"V. Estivill-Castro and I. Lee. AMOEBA: Hierarchical Clustering Based on Spatial Proximity Using Delaunay Diagram. In Proceedings of the 9th International Symposium on Spatial Data Handling, 2000. to appear."},{"key":"11_CR7","unstructured":"V. Estivill-Castro and I. Lee. AUTOCLUST: Automatic Clustering via Boundary Extraction for Massive Point-data Sets. In Proceedings of the 5th International Conference on Geocomputation, 2000. to appear. Extended version is available at http:\/\/www.cs.newcastle.edu.au\/Dept\/techrep.html as a technical report."},{"key":"11_CR8","doi-asserted-by":"crossref","unstructured":"V. Estivill-Castro and A.T. Murray. Discovering associations in spatial data-An efficient medoid based approach. In X. Wu, R. Kotagiri, and K.K. Korb, editors, Proceedings of the 2nd Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD-98), pages 110\u2013121, Melbourne, Australia, 1998. Springer-Verlag Lecture Notes in Artificial Intelligence 1394.","DOI":"10.1007\/3-540-64383-4_10"},{"issue":"8","key":"11_CR9","doi-asserted-by":"publisher","first-page":"578","DOI":"10.1093\/comjnl\/41.8.578","volume":"41","author":"C. Fraley","year":"1998","unstructured":"C. Fraley and A. E. Raftery. How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis. The Computer Journal, 41(8):578\u2013588, 1998.","journal-title":"The Computer Journal"},{"issue":"1","key":"11_CR10","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1139\/geomat-1991-0005","volume":"45","author":"C. M. Gold","year":"1991","unstructured":"C. M. Gold. Problems with handling spatial data-The Voronoi approach. CISM Journal ACSGC, 45(1):65\u201380, 1991.","journal-title":"CISM Journal ACSGC"},{"key":"11_CR11","series-title":"Lect Notes Comput Sci","doi-asserted-by":"crossref","first-page":"220","DOI":"10.1007\/3-540-55966-3_13","volume-title":"Theories and Methods of Spatio-Temporal Reasoning in Geographic Space","author":"C. M. Gold","year":"1992","unstructured":"C. M. Gold. The meaning of Neighbour. In G. Tinhofer and G. Schmidt, editors, Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, pages 220\u2013235, Berlin, 1992. Springer-Verlag Lecture Notes in Computer Science 639."},{"issue":"1","key":"11_CR12","doi-asserted-by":"publisher","first-page":"31","DOI":"10.1080\/02693799208901893","volume":"6","author":"M. F. Goodchild","year":"1992","unstructured":"M. F. Goodchild. Geographical information science. International Journal of Geographical Information Systems, 6(1):31\u201345, 1992.","journal-title":"International Journal of Geographical Information Systems"},{"key":"11_CR13","doi-asserted-by":"crossref","unstructured":"S. Guha, R. Rastogi, and K. Shim. CURE: An Efficient Clustering Algorithm for Large Databases. In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 73\u201384, 1998.","DOI":"10.1145\/276305.276312"},{"key":"11_CR14","doi-asserted-by":"crossref","unstructured":"I. Kang, T. Kim, and K. Li. A Spatial Data Mining Method by Delaunay Triangulation. In Proceedings of the 5th International Workshop on Advances in Geographic Information Systems (GIS-97), pages 35\u201339, 1997.","DOI":"10.1145\/267825.267836"},{"issue":"8","key":"11_CR15","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1109\/2.781637","volume":"32","author":"G. Karypis","year":"1999","unstructured":"G. Karypis, E. Han, and V. Kumar. CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling. IEEE Computer: Special Issue on Data Analysis and Mining, 32(8):68\u201375, 1999.","journal-title":"IEEE Computer: Special Issue on Data Analysis and Mining"},{"key":"11_CR16","series-title":"Lect Notes Comput Sci","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1007\/3-540-51542-9_6","volume-title":"Proceedings of the First Workshop on Algorithms and Data Structures WADS-89","author":"M. Keil","year":"1989","unstructured":"M. Keil and G Gutwin. The Delauney triangulation closely approximates the complete graph. In F. Denhe, J.-R. Sack, and N. Snatoro, editors, Proceedings of the First Workshop on Algorithms and Data Structures WADS-89, pages 47\u201356. Springer-Verlag Lecture Notes in Computer Science 382, 1989."},{"issue":"6","key":"11_CR17","doi-asserted-by":"publisher","first-page":"884","DOI":"10.1109\/69.553156","volume":"8","author":"E. M. Knorr","year":"1996","unstructured":"E. M. Knorr, R. T. Ng, and D. L. Shilvock. Finding Aggregate Proximity Relationships and Commonalities in Spatial Data Minings. IEEE Transactions on Knowledge and Data Engineering, 8(6):884\u2013897, 1996.","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"11_CR18","series-title":"Lect Notes Comput Sci","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1007\/3-540-63238-7_23","volume-title":"Proceedings of the 5th International Symposium on Spatial Databases","author":"E. M. Knorr","year":"1997","unstructured":"E. M. Knorr, R. T. Ng, and D. L. Shilvock. Finding Boundary Shape Matching Relationships in Spatial Data. In Proceedings of the 5th International Symposium on Spatial Databases, pages 29\u201346, Berlin, 1997. Springer-Verlag Lecture Notes in Computer Science 1262."},{"key":"11_CR19","unstructured":"G. Liotta. Low Degree Algorithm for Computing and Checking Gabriel Graphs. Technical Report 96-28, Department of Computer Science, Brown University, 1996."},{"key":"11_CR20","volume-title":"LEDA A platform for combinatorial and geometric computing","author":"K. Mehlhorn","year":"1999","unstructured":"K. Mehlhorn and S. N\u00e4her. LEDA A platform for combinatorial and geometric computing. Cambridge University Press, Cambridge, 1999."},{"key":"11_CR21","unstructured":"R. T. Ng and J. Han. Efficient and Effective Clustering Method for Spatial Data Mining. In Proceedings of the 20th International Conference on Very Large Data Bases (VLDB), pages 144\u2013155, 1994."},{"key":"11_CR22","volume-title":"Spatial Tessellations: Concepts and Applications of Voronoi Diagrams","author":"A. Okabe","year":"1992","unstructured":"A. Okabe, B. N. Boots, and K. Sugihara. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. John Wiley & Sons, West Sussex, 1992."},{"issue":"4","key":"11_CR23","first-page":"335","volume":"1","author":"S. Openshaw","year":"1987","unstructured":"S. Openshaw. A Mark 1 Geographical Analysis Machine for the automated analysis of point data sets. International Journal of GIS, 1(4):335\u2013358, 1987.","journal-title":"International Journal of GIS"},{"key":"11_CR24","first-page":"83","volume-title":"Spatial Analysis and GIS","author":"S. Openshaw","year":"1994","unstructured":"S. Openshaw. Two exploratory space-time-attribute pattern analysers relevant to GIS. In S. Fotheringham and P. Rogerson, editors, Spatial Analysis and GIS, pages 83\u2013104. Taylor and Francis, London, 1994."},{"issue":"4","key":"11_CR25","doi-asserted-by":"publisher","first-page":"387","DOI":"10.1016\/0098-3004(92)90067-2","volume":"18","author":"J. F. Paper","year":"1992","unstructured":"J. F. Paper and D. J. Maguire. Design models and functionality in gis. Computers and Geosciences, 18(4):387\u2013394, 1992.","journal-title":"Computers and Geosciences"},{"key":"11_CR26","unstructured":"C. Posse. Hierarchical Model-Based Clustering for Large Datasets. Technical Report 363, Department of Statistics, University of Washington, 1999."},{"key":"11_CR27","doi-asserted-by":"crossref","DOI":"10.1002\/0471725382","volume-title":"Robust Regression and Outlier Detection","author":"P. J. Rousseeuw","year":"1987","unstructured":"P. J. Rousseeuw and A. M. Leroy. Robust Regression and Outlier Detection. John Wiley, NY, 1987."},{"key":"11_CR28","series-title":"Lect Notes Comput Sci","doi-asserted-by":"crossref","first-page":"513","DOI":"10.1007\/BFb0052867","volume-title":"Proceedings of the Second International Symposium IDA-97","author":"E. Schikuta","year":"1997","unstructured":"E. Schikuta and M. Erhart. The BANG-Clustering System: Grid-Based Data Analysis. In X. Liu, P. Cohen, and M. Berthold, editors, Proceedings of the Second International Symposium IDA-97, pages 513\u2013524, Berlin, 1997. Advances in Intelligent Data Analysis, Springer-Verlag Lecture Notes in Computer Science 1280."},{"key":"11_CR29","doi-asserted-by":"crossref","unstructured":"E. Son, I. Kang, and K. Li. A Spatial Data Mining Method by Clustering Analysis. In ACM-GIS 1998, pages 157\u2013158, 1998.","DOI":"10.1145\/288692.288720"},{"key":"11_CR30","doi-asserted-by":"crossref","unstructured":"A. K. H. Tung, J. Hou, and J. Han. COE: Clustering with Obstacles Entities, A Preliminary Study. In Proceedings of the 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2000.","DOI":"10.1007\/3-540-45571-X_19"},{"key":"11_CR31","doi-asserted-by":"crossref","unstructured":"W. Wang, J. Yang, and R. Muntz. STING+: An Approach to Active Spatial Data Mining. In Proceedings of the International Conference on Data Engineering, pages 116\u2013125, 1999.","DOI":"10.1109\/ICDE.1999.754914"},{"issue":"1","key":"11_CR32","doi-asserted-by":"publisher","first-page":"68","DOI":"10.1109\/T-C.1971.223083","volume":"20","author":"C. T. Zahn","year":"1971","unstructured":"C. T. Zahn. Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters. IEEE Transactions of Computers, 20(1):68\u201386, 1971.","journal-title":"IEEE Transactions of Computers"},{"key":"11_CR33","doi-asserted-by":"crossref","unstructured":"T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An Efficient Data Clustering Method for Very Large Databases. In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 103\u2013114, 1996.","DOI":"10.1145\/235968.233324"}],"container-title":["Lecture Notes in Computer Science","Temporal, Spatial, and Spatio-Temporal Data Mining"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/3-540-45244-3_11","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,4,22]],"date-time":"2020-04-22T20:30:44Z","timestamp":1587587444000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/3-540-45244-3_11"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2001]]},"ISBN":["9783540417736","9783540452447"],"references-count":33,"URL":"https:\/\/doi.org\/10.1007\/3-540-45244-3_11","relation":{},"ISSN":["0302-9743"],"issn-type":[{"type":"print","value":"0302-9743"}],"subject":[],"published":{"date-parts":[[2001]]}}}