{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,18]],"date-time":"2025-04-18T14:27:48Z","timestamp":1744986468683},"reference-count":115,"publisher":"Wiley","issue":"2","license":[{"start":{"date-parts":[[2023,1,10]],"date-time":"2023-01-10T00:00:00Z","timestamp":1673308800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"}],"funder":[{"DOI":"10.13039\/501100008530","name":"European Regional Development Fund","doi-asserted-by":"publisher","award":["POCI\u201001\u20100247\u2010FEDER\u2010045907"],"id":[{"id":"10.13039\/501100008530","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["wires.onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["WIREs Data Min & Knowl"],"published-print":{"date-parts":[[2023,3]]},"abstract":"Abstract<\/jats:title>Federated learning (FL) is a collaborative, decentralized privacy\u2010preserving method to attach the challenges of storing data and data privacy. Artificial intelligence, machine learning, smart devices, and deep learning have strongly marked the last years. Two challenges arose in data science as a result. First, the regulation protected the data by creating the General Data Protection Regulation, in which organizations are not allowed to keep or transfer data without the owner's authorization. Another challenge is the large volume of data generated in the era of big data, and keeping that data in one only server becomes increasingly tricky. Therefore, the data is allocated into different locations or generated by devices, creating the need to build models or perform calculations without transferring data to a single location. The new term FL emerged as a sub\u2010area of machine learning that aims to solve the challenge of making distributed models with privacy considerations. This survey starts by describing relevant concepts, definitions, and methods, followed by an in\u2010depth investigation of federated model evaluation. Finally, we discuss three promising applications for further research: anomaly detection, distributed data streams, and graph representation.<\/jats:p>This article is categorized under:\nTechnologies > Machine Learning<\/jats:p><\/jats:list-item>\nTechnologies > Artificial Intelligence<\/jats:p><\/jats:list-item>\n<\/jats:list><\/jats:p>","DOI":"10.1002\/widm.1486","type":"journal-article","created":{"date-parts":[[2023,1,10]],"date-time":"2023-01-10T12:10:25Z","timestamp":1673352625000},"update-policy":"http:\/\/dx.doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":10,"title":["Towards federated learning: An overview of methods and applications"],"prefix":"10.1002","volume":"13","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3144-3600","authenticated-orcid":false,"given":"Paula Raissa","family":"Silva","sequence":"first","affiliation":[{"name":"LIAAD, INESC TEC Porto Portugal"},{"name":"FEUP, University of Porto Porto Portugal"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6219-3977","authenticated-orcid":false,"given":"Jo\u00e3o","family":"Vinagre","sequence":"additional","affiliation":[{"name":"FCUP, University of Porto Porto Portugal"},{"name":"Joint Research Centre European Commission Seville Spain"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3357-1195","authenticated-orcid":false,"given":"Jo\u00e3o","family":"Gama","sequence":"additional","affiliation":[{"name":"LIAAD, INESC TEC Porto Portugal"},{"name":"FEP, University of Porto Porto Portugal"}]}],"member":"311","published-online":{"date-parts":[[2023,1,10]]},"reference":[{"key":"e_1_2_18_1_2_1","unstructured":"Liu Y. Kang Y. Zhang X. Li L. Cheng Y. Chen T. Hong M. &Yang Q.(2020).A communication efficient collaborative learning framework for distributed features."},{"key":"e_1_2_18_1_3_1","unstructured":"Zhang K. Yang C. Li X. Sun L. &Yiu S.(2021).Subgraph federated learning with missing neighbor generation. InNeurips(pp. 6671\u20136682)."},{"key":"e_1_2_18_1_4_1","doi-asserted-by":"crossref","unstructured":"Zhao Y. Chen J. Wu D. Teng J. &Yu S.(2019).Multi\u2010task network anomaly detection using federated learning. InProceedings of the Tenth International Symposium on Information and Communication Technology(pp. 273\u2013279). ACM.https:\/\/doi.org\/10.1145\/3368926.3369705","DOI":"10.1145\/3368926.3369705"},{"key":"e_1_2_18_2_2_1","doi-asserted-by":"crossref","unstructured":"Abadi M. Chu A. Goodfellow I. J. McMahan H. B. Mironov I. Talwar K. &Zhang L.(2016).Deep learning with differential privacy. InProceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security Vienna Austria October 24\u201328 2016 (pp. 308\u2013318). doi:https:\/\/doi.org\/10.1145\/2976749.2978318","DOI":"10.1145\/2976749.2978318"},{"key":"e_1_2_18_2_3_1","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2020.3030072"},{"key":"e_1_2_18_2_4_1","unstructured":"Agarwal N. Suresh A. T. Yu F. X. Kumar S. &McMahan B.(2018).Cpsgd: Communication\u2010efficient and differentially\u2010private distributed SGD. InAdvances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems(pp. 7575\u20137586)."},{"key":"e_1_2_18_2_5_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2020.3013541"},{"key":"e_1_2_18_2_6_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.future.2021.10.023"},{"key":"e_1_2_18_2_7_1","first-page":"1","article-title":"Time for a change: A tutorial for comparing multiple classifiers through Bayesian analysis","volume":"18","author":"Benavoli A.","year":"2017","journal-title":"Journal of Machine Learning Research"},{"key":"e_1_2_18_2_8_1","first-page":"374","article-title":"Towards federated learning at scale: System design","author":"Bonawitz K.","year":"2019","journal-title":"Proceedings of Machine Learning and Systems"},{"key":"e_1_2_18_2_9_1","doi-asserted-by":"publisher","DOI":"10.1145\/3133956.3133982"},{"key":"e_1_2_18_2_10_1","article-title":"Practical secure aggregation for federated learning on user\u2010held data","author":"Bonawitz K. A.","year":"2016","journal-title":"CoRR"},{"key":"e_1_2_18_2_11_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW53098.2021.00309"},{"key":"e_1_2_18_2_12_1","unstructured":"Caldas S. Wu P. Li T. Konecn\u00fd J. McMahan H. B. Smith V. &Talwalkar A.(2018).LEAF: A benchmark for federated settings(Vol. abs\/1812.01097)."},{"key":"e_1_2_18_2_13_1","first-page":"1","article-title":"Towards on\u2010device federated learning: A direct acyclic graph\u2010based blockchain approach","author":"Cao M.","year":"2021","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"issue":"1","key":"e_1_2_18_2_14_1","first-page":"91","article-title":"The Paillier's cryptosystem and some variants revisited","volume":"19","author":"Cao Z.","year":"2017","journal-title":"International Journal of Network Security"},{"key":"e_1_2_18_2_15_1","first-page":"544","volume-title":"Proceedings of the 5th International Conference on Information Systems Security and Privacy","author":"Chamatidis I.","year":"2019"},{"key":"e_1_2_18_2_16_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.comcom.2021.02.014"},{"key":"e_1_2_18_2_17_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.procs.2020.01.039"},{"key":"e_1_2_18_2_18_1","doi-asserted-by":"crossref","unstructured":"Chen M. Zhang W. Yuan Z. Jia Y. &Chen H.(2021).Fede: Embedding knowledge graphs in federated setting. InProceedings of the 10th International Joint Conference on Knowledge Graphs(pp. 80\u201388).","DOI":"10.1145\/3502223.3502233"},{"key":"e_1_2_18_2_19_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2020.02.037"},{"key":"e_1_2_18_2_20_1","doi-asserted-by":"publisher","DOI":"10.1109\/BigData50022.2020.9378161"},{"key":"e_1_2_18_2_21_1","doi-asserted-by":"publisher","DOI":"10.1109\/MIS.2020.2988604"},{"issue":"2","key":"e_1_2_18_2_22_1","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3154503","article-title":"Distributed statistical machine learning in adversarial settings: Byzantine gradient descent","volume":"1","author":"Chen Y.","year":"2017","journal-title":"Proceedings of the ACM on Measurement and Analysis of Computing Systems"},{"key":"e_1_2_18_2_23_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2019.2953131"},{"key":"e_1_2_18_2_24_1","unstructured":"Cheng K. Fan T. Jin Y. Liu Y. Chen T. &Yang Q.(2019).Secureboost: A lossless federated learning framework(Vol. abs\/1901.08755)."},{"key":"e_1_2_18_2_25_1","volume-title":"Extra\u00e7\u00e3o de conhecimento de dados: Data mining","author":"Gama J. M. P.","year":"2017"},{"key":"e_1_2_18_2_26_1","doi-asserted-by":"publisher","DOI":"10.1561\/0400000042"},{"key":"e_1_2_18_2_27_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-63076-8_7"},{"key":"e_1_2_18_2_28_1","first-page":"3407","volume-title":"Proceedings of the 38th international conference on machine learning","author":"Fraboni Y.","year":"2021"},{"key":"e_1_2_18_2_29_1","doi-asserted-by":"publisher","DOI":"10.1515\/popets-2017-0053"},{"key":"e_1_2_18_2_30_1","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2022.3150363"},{"key":"e_1_2_18_2_31_1","volume-title":"Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020","author":"Ghosh A.","year":"2020"},{"key":"e_1_2_18_2_32_1","doi-asserted-by":"publisher","DOI":"10.1109\/MNET.011.2000783"},{"key":"e_1_2_18_2_33_1","unstructured":"Google. (2020).Tensorflow federated. Retrieved fromhttps:\/\/www.tensorflow.org\/federated"},{"key":"e_1_2_18_2_34_1","doi-asserted-by":"publisher","DOI":"10.1109\/IPDPS49936.2021.00075"},{"key":"e_1_2_18_2_35_1","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN52387.2021.9533294"},{"key":"e_1_2_18_2_36_1","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2019.2945367"},{"key":"e_1_2_18_2_37_1","unstructured":"Hardy S. Henecka W. Ivey\u2010Law H. Nock R. Patrini G. Smith G. &Thorne B.(2017).Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption (Vol. abs\/1711.10677)."},{"key":"e_1_2_18_2_38_1","article-title":"Fedgraphnn: A federated learning system and benchmark for graph neural networks","volume":"2104","author":"He C.","year":"2021","journal-title":"CoRR"},{"key":"e_1_2_18_2_39_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cose.2020.102033"},{"key":"e_1_2_18_2_40_1","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2020.2991416"},{"key":"e_1_2_18_2_41_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.compind.2021.103509"},{"key":"e_1_2_18_2_42_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jksuci.2021.05.016"},{"key":"e_1_2_18_2_43_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11280-019-00775-w"},{"key":"e_1_2_18_2_44_1","first-page":"5132","volume-title":"Proceedings of the 37th International Conference on Machine Learning","author":"Karimireddy S. P.","year":"2020"},{"key":"e_1_2_18_2_45_1","doi-asserted-by":"publisher","DOI":"10.1145\/3289600.3290968"},{"key":"e_1_2_18_2_46_1","doi-asserted-by":"crossref","unstructured":"Kim Y. Sun J. Yu H. &Jiang X.(2017).Federated tensor factorization for computational phenotyping. InProceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(pp. 887\u2013895). ACM. doi:https:\/\/doi.org\/10.1145\/3097983.3098118.","DOI":"10.1145\/3097983.3098118"},{"key":"e_1_2_18_2_47_1","doi-asserted-by":"publisher","DOI":"10.1145\/3486626.3493439"},{"key":"e_1_2_18_2_48_1","doi-asserted-by":"publisher","DOI":"10.2196\/medinform.7744"},{"key":"e_1_2_18_2_49_1","volume-title":"CSKB: A cyber security knowledge base based on knowledge graph","author":"Li K.","year":"2020"},{"key":"e_1_2_18_2_50_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cie.2020.106854"},{"key":"e_1_2_18_2_51_1","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v34i04.5895"},{"key":"e_1_2_18_2_52_1","doi-asserted-by":"publisher","DOI":"10.1109\/MSP.2020.2975749"},{"key":"e_1_2_18_2_53_1","volume-title":"Proceedings of Machine Learning and Systems 2020","author":"Li T.","year":"2020"},{"key":"e_1_2_18_2_54_1","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN52387.2021.9533419"},{"key":"e_1_2_18_2_55_1","unstructured":"Lin Y. Chen C. Chen C. &Wang L.(2020).Improving federated relational data modeling via basis alignment and weight penalty.arXiv preprint arXiv:2011.11369."},{"key":"e_1_2_18_2_56_1","doi-asserted-by":"publisher","DOI":"10.1109\/MIS.2020.2988525"},{"key":"e_1_2_18_2_57_1","unstructured":"Liu Z. Li T. Smith V. &Sekar V.(2019).Enhancing the privacy of federated learning with sketching (Vol. abs\/1911.01812)."},{"key":"e_1_2_18_2_58_1","doi-asserted-by":"publisher","DOI":"10.1109\/MNET.001.1900506"},{"key":"e_1_2_18_2_59_1","unstructured":"Mansour Y. Mohri M. Ro J. &Suresh A. T.(2020).Three approaches for personalization with applications to federated learning.CoRR abs\/2002.10619."},{"key":"e_1_2_18_2_60_1","unstructured":"McMahan B. Moore E. Ramage D. Hampson S. &y Arcas B. A.(2017).Communication\u2010efficient learning of deep networks from decentralized data. InProceedings of the 20th International Conference on Artificial Intelligence and Statistics(Vol. 54 pp. 1273\u20131282). PMLR."},{"key":"e_1_2_18_2_61_1","unstructured":"McMahan H. B. Ramage D. Talwar K. &Zhang L.(2018).Learning differentially private recurrent language models. InProceedings of the 6th International Conference on Learning Representations. OpenReview.net."},{"key":"e_1_2_18_2_62_1","doi-asserted-by":"publisher","DOI":"10.1109\/BigData47090.2019.9005983"},{"key":"e_1_2_18_2_63_1","doi-asserted-by":"crossref","unstructured":"Meng C. Rambhatla S. &Liu Y.(2021).Cross\u2010node federated graph neural network for spatio\u2010temporal data modeling. InProceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining(pp. 1202\u20131211).","DOI":"10.1145\/3447548.3467371"},{"key":"e_1_2_18_2_64_1","doi-asserted-by":"publisher","DOI":"10.1109\/SP.2017.12"},{"key":"e_1_2_18_2_65_1","doi-asserted-by":"publisher","DOI":"10.1109\/ARITH.2019.00047"},{"key":"e_1_2_18_2_66_1","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2021.3077803"},{"key":"e_1_2_18_2_67_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.future.2020.10.007"},{"key":"e_1_2_18_2_68_1","doi-asserted-by":"publisher","DOI":"10.1109\/COMST.2021.3075439"},{"key":"e_1_2_18_2_69_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICDCS.2019.00080"},{"key":"e_1_2_18_2_70_1","doi-asserted-by":"crossref","unstructured":"Nilsson A. Smith S. Ulm G. Gustavsson E. &Jirstrand M.(2018).A performance evaluation of federated learning algorithms. InProceedings of the Second Workshop on Distributed Infrastructures for Deep Learning(pp. 1\u20138). ACM. doi:https:\/\/doi.org\/10.1145\/3286490.3286559","DOI":"10.1145\/3286490.3286559"},{"key":"e_1_2_18_2_71_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICC.2019.8761315"},{"key":"e_1_2_18_2_72_1","unstructured":"Nock R. Hardy S. Henecka W. Ivey\u2010Law H. Patrini G. Smith G. &Thorne B.(2018).Entity resolution and federated learning get a federated resolution. (Vol. abs\/1803.04035)."},{"key":"e_1_2_18_2_73_1","doi-asserted-by":"publisher","DOI":"10.3390\/app8122663"},{"key":"e_1_2_18_2_74_1","doi-asserted-by":"publisher","DOI":"10.1109\/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00119"},{"key":"e_1_2_18_2_75_1","unstructured":"Ramaswamy S. Mathews R. Rao K. &Beaufays F.(2019).Federated learning for emoji prediction in a mobile keyboard(Vol. abs\/1906.04329)."},{"key":"e_1_2_18_2_76_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-91455-8_14"},{"key":"e_1_2_18_2_77_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.inffus.2022.09.011"},{"key":"e_1_2_18_2_78_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.inffus.2020.07.009"},{"key":"e_1_2_18_2_79_1","volume-title":"Applied cryptography\u2014Protocols, algorithms, and source code in c","author":"Schneier B.","year":"1996"},{"key":"e_1_2_18_2_80_1","doi-asserted-by":"publisher","DOI":"10.1109\/BigData47090.2019.9006280"},{"key":"e_1_2_18_2_81_1","first-page":"909","volume-title":"Proceedings of the 53rd Annual Allerton Conference on Communication, Control, and Computing","author":"Shokri R.","year":"2015"},{"key":"e_1_2_18_2_82_1","doi-asserted-by":"crossref","unstructured":"Truex S. Baracaldo N. Anwar A. Steinke T. Ludwig H. Zhang R. &Zhou Y.(2019).A hybrid approach to privacy\u2010preserving federated learning. InProceedings of the 12th ACM Workshop on Artificial Intelligence and Security(pp. 1\u201311). ACM.https:\/\/doi.org\/10.1145\/3338501.3357370","DOI":"10.1145\/3338501.3357370"},{"key":"e_1_2_18_2_83_1","first-page":"509","volume-title":"Proceedings of the 20th International Conference on Artificial Intelligence and Statistics","author":"Vanhaesebrouck P.","year":"2017"},{"key":"e_1_2_18_2_84_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-57959-7"},{"key":"e_1_2_18_2_85_1","unstructured":"Wang C. Chen B. Li G. &Wang H.(2021).Fl\u2010agcns: Federated learning framework for automatic graph convolutional network search.arXiv preprint arXiv:2104.04141."},{"key":"e_1_2_18_2_86_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2020.12.007"},{"key":"e_1_2_18_2_87_1","doi-asserted-by":"publisher","DOI":"10.1145\/3448300.3467827"},{"key":"e_1_2_18_2_88_1","unstructured":"Wang H. Yurochkin M. Sun Y. Papailiopoulos D. S. &Khazaeni Y.(2020).Federated learning with matched averaging. InProceedings of the 8th International Conference on Learning Representations. OpenReview.net."},{"key":"e_1_2_18_2_89_1","unstructured":"Wang K. Mathews R. Kiddon C. Eichner H. Beaufays F. &Ramage D.(2019).Federated evaluation of on\u2010device personalization(Vol. abs\/1910.10252)."},{"key":"e_1_2_18_2_90_1","doi-asserted-by":"publisher","DOI":"10.17706\/jsw.16.1.39-45"},{"key":"e_1_2_18_2_91_1","unstructured":"Webank. (2019).Federated AI. Retrieved fromhttps:\/\/github.com\/FederatedAI\/FATE."},{"key":"e_1_2_18_2_92_1","unstructured":"Wu C. Wu F. Cao Y. Huang Y. &Xie X.(2021).Fedgnn: Federated graph neural network for privacy\u2010preserving recommendation. CoRR abs\/2102.04925."},{"key":"e_1_2_18_2_93_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ipm.2021.102839"},{"key":"e_1_2_18_2_94_1","unstructured":"Xie H. Ma J. Xiong L. &Yang C.(2021).Federated graph classification over non\u2010iid graphs. InNeurips(pp. 18839\u201318852)."},{"key":"e_1_2_18_2_95_1","unstructured":"Xie M. Long G. Shen T. Zhou T. Wang X. &Jiang J.(2020).Multi\u2010center federated learning.CoRR abs\/2005.01026."},{"key":"e_1_2_18_2_96_1","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2019.2929409"},{"key":"e_1_2_18_2_97_1","doi-asserted-by":"crossref","unstructured":"Xu R. Baracaldo N. Zhou Y. Anwar A. &Ludwig H.(2019).Hybridalpha: An efficient approach for privacy\u2010preserving federated learning. InProceedings of the 12th ACM Workshop on Artificial Intelligence and Security(pp. 13\u201323). ACM.https:\/\/doi.org\/10.1145\/3338501.3357371","DOI":"10.1145\/3338501.3357371"},{"key":"e_1_2_18_2_98_1","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2021.3057653"},{"key":"e_1_2_18_2_99_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNSE.2020.2996612"},{"key":"e_1_2_18_2_100_1","doi-asserted-by":"publisher","DOI":"10.1145\/3298981"},{"key":"e_1_2_18_2_101_1","doi-asserted-by":"publisher","DOI":"10.2200\/S00960ED2V01Y201910AIM043"},{"key":"e_1_2_18_2_102_1","doi-asserted-by":"crossref","unstructured":"Yang W. Zhang Y. Ye K. Li L. &Xu C.(2019).FFD: A federated learning based method for credit card fraud detection. InProceedings of the Big Data\u2014Bigdata 2019\u20148th International Congress Held as Part of the Services Conference Federation(Vol. 11514 pp. 18\u201332). Springer.https:\/\/doi.org\/10.1007\/978-3-030-23551-2-2","DOI":"10.1007\/978-3-030-23551-2_2"},{"issue":"29","key":"e_1_2_18_2_103_1","article-title":"Fedadmp: A joint anomaly detection and mobility prediction framework via federated learning","volume":"8","author":"Yang Z.","year":"2021","journal-title":"EAI Endorsed Transactions of Security Safety"},{"key":"e_1_2_18_2_104_1","doi-asserted-by":"publisher","DOI":"10.1002\/widm.1443"},{"key":"e_1_2_18_2_105_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICPADS51040.2020.00083"},{"key":"e_1_2_18_2_106_1","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2022.3157056"},{"key":"e_1_2_18_2_107_1","first-page":"493","volume-title":"Proceedings of the 2020 USENIX Annual Technical Conference","author":"Zhang C.","year":"2020"},{"key":"e_1_2_18_2_108_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2021.106775"},{"key":"e_1_2_18_2_109_1","unstructured":"Zhang H. Shen T. Wu F. Yin M. Yang H. &Wu C.(2021).Federated graph learning\u2014A position paper.arXiv preprint arXiv:2105.11099."},{"key":"e_1_2_18_2_110_1","doi-asserted-by":"publisher","DOI":"10.1145\/3485730.3493444"},{"key":"e_1_2_18_2_111_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2018.10.024"},{"key":"e_1_2_18_2_112_1","doi-asserted-by":"publisher","DOI":"10.1007\/s12083-021-01074-w"},{"key":"e_1_2_18_2_113_1","doi-asserted-by":"crossref","unstructured":"Zheng W. Yan L. Gou C. &Wang F.(2020).Federated meta\u2010learning for fraudulent credit card detection. InIJCAI(pp. 4654\u20134660). ijcai.org.","DOI":"10.24963\/ijcai.2020\/642"}],"container-title":["WIREs Data Mining and Knowledge Discovery"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/widm.1486","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/full-xml\/10.1002\/widm.1486","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/wires.onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/widm.1486","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,22]],"date-time":"2023-08-22T03:07:58Z","timestamp":1692673678000},"score":1,"resource":{"primary":{"URL":"https:\/\/wires.onlinelibrary.wiley.com\/doi\/10.1002\/widm.1486"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,1,10]]},"references-count":115,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2023,3]]}},"alternative-id":["10.1002\/widm.1486"],"URL":"https:\/\/doi.org\/10.1002\/widm.1486","archive":["Portico"],"relation":{},"ISSN":["1942-4787","1942-4795"],"issn-type":[{"value":"1942-4787","type":"print"},{"value":"1942-4795","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,1,10]]},"assertion":[{"value":"2022-07-22","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2022-12-10","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2023-01-10","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}