{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,19]],"date-time":"2025-03-19T11:16:42Z","timestamp":1742383002916},"reference-count":113,"publisher":"Wiley","issue":"4","license":[{"start":{"date-parts":[[2020,1,18]],"date-time":"2020-01-18T00:00:00Z","timestamp":1579305600000},"content-version":"am","delay-in-days":365,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#am"},{"start":{"date-parts":[[2019,1,18]],"date-time":"2019-01-18T00:00:00Z","timestamp":1547769600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"}],"funder":[{"DOI":"10.13039\/501100000923","name":"Australian Research Council","doi-asserted-by":"publisher","award":["DP180101192","DE170101134"],"id":[{"id":"10.13039\/501100000923","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001665","name":"Agence Nationale de la Recherche","doi-asserted-by":"publisher","award":["SMILES ANR\u201018\u2010CE40\u20100014"],"id":[{"id":"10.13039\/501100001665","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["wires.onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["WIREs Data Min & Knowl"],"published-print":{"date-parts":[[2019,7]]},"abstract":"Complex data analysis is a central topic of modern statistics and learning systems which is becoming of broader interest with the increasing prevalence of high\u2010dimensional data. The challenge is to develop statistical models and autonomous algorithms that are able to discern knowledge from raw data, which can be achieved through clustering techniques, or to make predictions of future data via classification techniques. Latent data models, including mixture model\u2010based approaches, are among the most popular and successful approaches in both supervised and unsupervised learning. Although being traditional tools in multivariate analysis, they are growing in popularity when considered in the framework of functional data analysis (FDA). FDA is the data analysis paradigm in which each datum is a function, rather than a real vector. In many areas of application, including signal and image processing, functional imaging, bioinformatics, etc., the analyzed data are indeed often available in the form of discretized values of functions, curves, or surfaces. This functional aspect of the data adds additional difficulties when compared to classical multivariate data analysis. We review and present approaches for model\u2010based clustering and classification of functional data. We present well\u2010grounded statistical models along with efficient algorithmic tools to address problems regarding the clustering and the classification of these functional data, including their heterogeneity, missing information, and dynamical hidden structures. The presented models and algorithms are illustrated via real\u2010world functional data analysis problems from several areas of application.<\/jats:p>This article is categorized under:Fundamental Concepts of Data and Knowledge > Data Concepts<\/jats:p><\/jats:list-item>Algorithmic Development > Statistics<\/jats:p><\/jats:list-item>Technologies > Structure Discovery and Clustering<\/jats:p><\/jats:list-item><\/jats:list><\/jats:p>","DOI":"10.1002\/widm.1298","type":"journal-article","created":{"date-parts":[[2019,1,18]],"date-time":"2019-01-18T13:05:31Z","timestamp":1547816731000},"update-policy":"http:\/\/dx.doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":34,"title":["Model\u2010based clustering and classification of functional data"],"prefix":"10.1002","volume":"9","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5894-3103","authenticated-orcid":false,"given":"Faicel","family":"Chamroukhi","sequence":"first","affiliation":[{"name":"Department of Mathematics and Computer Science Normandie University, UNICAEN, UMR CNRS LMNO Caen France"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9958-432X","authenticated-orcid":false,"given":"Hien D.","family":"Nguyen","sequence":"additional","affiliation":[{"name":"Department of Mathematics and Statistics La Trobe University Melbourne Victoria Australia"}]}],"member":"311","published-online":{"date-parts":[[2019,1,18]]},"reference":[{"key":"e_1_2_12_2_1","doi-asserted-by":"publisher","DOI":"10.1111\/1467-9469.00350"},{"key":"e_1_2_12_3_1","doi-asserted-by":"publisher","DOI":"10.1109\/TAC.1974.1100705"},{"key":"e_1_2_12_4_1","unstructured":"Alon J. Sclaroff S. Kollios G. &Pavlovic V.(2003).Discovering clusters in motion time\u2010series data.Paper presented at the Proceedings of the 2003 I.E. Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 375\u2013381) Los Alamitos CA."},{"key":"e_1_2_12_5_1","doi-asserted-by":"publisher","DOI":"10.1142\/S0219691313500033"},{"key":"e_1_2_12_6_1","doi-asserted-by":"publisher","DOI":"10.1214\/15-EJS1026"},{"key":"e_1_2_12_7_1","doi-asserted-by":"publisher","DOI":"10.1023\/A:1018510926151"},{"key":"e_1_2_12_8_1","doi-asserted-by":"publisher","DOI":"10.1109\/34.865189"},{"key":"e_1_2_12_9_1","doi-asserted-by":"publisher","DOI":"10.1016\/S0167-9473(02)00163-9"},{"key":"e_1_2_12_10_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11634-011-0095-6"},{"key":"e_1_2_12_11_1","volume-title":"Classification and regression trees","author":"Breiman L.","year":"1984"},{"issue":"1","key":"e_1_2_12_12_1","first-page":"73","article-title":"The SEM algorithm a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem","volume":"2","author":"Celeux G.","year":"1985","journal-title":"Computational Statistics Quarterly"},{"key":"e_1_2_12_13_1","doi-asserted-by":"publisher","DOI":"10.1016\/0167-9473(92)90042-E"},{"key":"e_1_2_12_14_1","doi-asserted-by":"publisher","DOI":"10.1191\/1471082X05st096oa"},{"key":"e_1_2_12_15_1","unstructured":"Chamroukhi F.(2010).Hidden process regression for curve modeling classification and tracking.(Ph.D. thesis). Universit\u00e9 de Technologie de Compi\u00e8gne."},{"key":"e_1_2_12_16_1","doi-asserted-by":"crossref","unstructured":"Chamroukhi F.(2013).Robust EM algorithm for model\u2010based curve clustering.Paper presented at the Proceedings of the International Joint Conference on Neural Networks (IJCNN) (pp. 1\u20138) IEEE Dallas TX.","DOI":"10.1109\/IJCNN.2013.6706758"},{"key":"e_1_2_12_17_1","unstructured":"Chamroukhi F.(2015a). Bayesian mixtures of spatial spline regressions.arXiv:1508.00635."},{"key":"e_1_2_12_18_1","unstructured":"Chamroukhi F.(2015b).Statistical learning of latent data models for complex data analysis.(Accreditation to Supervise Research Thesis (HDR)) Universit\u00e9 de Toulon."},{"key":"e_1_2_12_19_1","doi-asserted-by":"publisher","DOI":"10.1007\/s00357-016-9212-8"},{"key":"e_1_2_12_20_1","doi-asserted-by":"publisher","DOI":"10.1080\/00949655.2015.1109096"},{"key":"e_1_2_12_21_1","doi-asserted-by":"crossref","unstructured":"Chamroukhi F.&Glotin H.(2012).Mixture model\u2010based functional discriminant analysis for curve classification.Paper presented at the Proceedings of the International Joint Conference on Neural Networks (IJCNN) (1\u20138) IEEE Brisbane Australia.","DOI":"10.1109\/IJCNN.2012.6252818"},{"key":"e_1_2_12_22_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2012.10.030"},{"key":"e_1_2_12_23_1","doi-asserted-by":"crossref","unstructured":"Chamroukhi F. Sam\u00e9 A. Aknin P. &Govaert G.(2011).Model\u2010based clustering with hidden markov model regression for time series with regime changes.Paper presented at the Proceedings of the International Joint Conference on Neural Networks (IJCNN) (pp. 2814\u20132821) IEEE San Jose California.","DOI":"10.1109\/IJCNN.2011.6033590"},{"key":"e_1_2_12_24_1","doi-asserted-by":"crossref","unstructured":"Chamroukhi F. Sam\u00e9 A. Govaert G. &Aknin P.(2009a).A regression model with a hidden logistic process for feature extraction from time series.Paper presented at the International Joint Conference on Neural Networks (IJCNN) (pp. 489\u2013496) Atlanta GA.","DOI":"10.1109\/IJCNN.2009.5178921"},{"key":"e_1_2_12_25_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2009.06.040"},{"key":"e_1_2_12_26_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2009.12.023"},{"key":"e_1_2_12_27_1","doi-asserted-by":"publisher","DOI":"10.1016\/S1097-2765(00)80114-8"},{"key":"e_1_2_12_28_1","volume-title":"Introduction to algorithms","author":"Cormen T. H.","year":"2009"},{"key":"e_1_2_12_29_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.csda.2006.07.012"},{"key":"e_1_2_12_30_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4612-6333-3"},{"key":"e_1_2_12_31_1","doi-asserted-by":"publisher","DOI":"10.1093\/biomet\/ass003"},{"issue":"1","key":"e_1_2_12_32_1","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1111\/j.2517-6161.1977.tb01600.x","article-title":"Maximum likelihood from incomplete data via the EM algorithm","volume":"39","author":"Dempster A. P.","year":"1977","journal-title":"Journal of The Royal Statistical Society, Series B"},{"key":"e_1_2_12_33_1","doi-asserted-by":"publisher","DOI":"10.1007\/BF01897167"},{"key":"e_1_2_12_34_1","unstructured":"Devijver E.(2014).Model\u2010based clustering for high\u2010dimensional data. Application to functional data(Technical Report No. hal\u201001060063). D\u00e9partement de Math\u00e9matiques Universit\u00e9 Paris\u2010Sud."},{"key":"e_1_2_12_35_1","series-title":"Advanced Texts in Econometrics","doi-asserted-by":"crossref","first-page":"283","DOI":"10.1093\/oso\/9780198773917.003.0010","volume-title":"Nonstationary Time Series Analysis and Cointegration","author":"Diebold F.","year":"1994"},{"key":"e_1_2_12_36_1","doi-asserted-by":"publisher","DOI":"10.1080\/00949650802590261"},{"key":"e_1_2_12_37_1","doi-asserted-by":"publisher","DOI":"10.1016\/S0167-9473(03)00032-X"},{"key":"e_1_2_12_38_1","series-title":"Springer series in statistics","volume-title":"Nonparametric functional data analysis: Theory and practice","author":"Ferraty F.","year":"2006"},{"key":"e_1_2_12_39_1","doi-asserted-by":"publisher","DOI":"10.1109\/34.990138"},{"key":"e_1_2_12_40_1","doi-asserted-by":"crossref","unstructured":"Fraley C.&Raftery A. E.(2005).Bayesian regularization for normal mixture estimation and model\u2010based clustering(Technical Report No. 486). Seattle WA Departament of Statistics University of Washington Seattle.","DOI":"10.21236\/ADA454825"},{"key":"e_1_2_12_41_1","doi-asserted-by":"publisher","DOI":"10.1007\/s00357-007-0004-5"},{"key":"e_1_2_12_42_1","series-title":"Springer Series in Statistics","volume-title":"Finite mixture and Markov switching models","author":"Fr\u00fchwirth\u2010Schnatter S.","year":"2006"},{"key":"e_1_2_12_43_1","doi-asserted-by":"crossref","unstructured":"Gaffney S.&Smyth P.(1999).Trajectory clustering with mixtures of regression models.Paper presented at the Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 63\u201372) ACM Press.","DOI":"10.1145\/312129.312198"},{"key":"e_1_2_12_44_1","unstructured":"Gaffney S. J.(2004).Probabilistic Curve\u2010Aligned Clustering and Prediction with Regression Mixture Models.(Ph.D. Thesis) Department of Computer Science University of California Irvine."},{"key":"e_1_2_12_45_1","unstructured":"Gaffney S. J.&Smyth P.(2004).Joint probabilistic curve clustering and alignment.Paper presented at the Advances in Neural Information Processing Systems (NIPS) Vancouver BC."},{"key":"e_1_2_12_46_1","doi-asserted-by":"publisher","DOI":"10.1111\/j.1541-0420.2012.01828.x"},{"key":"e_1_2_12_47_1","unstructured":"Gui J.&Li H.(2003).Mixture functional discriminant analysis for gene function classification based on time course gene expression data.Paper presented at the Proceedings of the Joint Statistical Meeting (Biometric Section)."},{"key":"e_1_2_12_48_1","doi-asserted-by":"publisher","DOI":"10.1214\/aos\/1176324456"},{"key":"e_1_2_12_49_1","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1111\/j.2517-6161.1996.tb02073.x","article-title":"Discriminant analysis by gaussian mixtures","volume":"58","author":"Hastie T.","year":"1996","journal-title":"Journal of the Royal Statistical Society, Series B"},{"key":"e_1_2_12_50_1","series-title":"Springer series in statistics","volume-title":"Data mining, inference, and prediction","author":"Hastie T.","year":"2010"},{"key":"e_1_2_12_51_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2009.11.022"},{"key":"e_1_2_12_52_1","doi-asserted-by":"publisher","DOI":"10.1007\/BF01908075"},{"key":"e_1_2_12_53_1","doi-asserted-by":"publisher","DOI":"10.1111\/1467-9876.00136"},{"key":"e_1_2_12_54_1","doi-asserted-by":"publisher","DOI":"10.1080\/10485252.2011.608430"},{"key":"e_1_2_12_55_1","doi-asserted-by":"publisher","DOI":"10.1198\/0003130042836"},{"key":"e_1_2_12_56_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.csda.2012.12.004"},{"key":"e_1_2_12_57_1","doi-asserted-by":"publisher","DOI":"10.1111\/1467-9868.00297"},{"key":"e_1_2_12_58_1","doi-asserted-by":"publisher","DOI":"10.1198\/016214503000189"},{"key":"e_1_2_12_59_1","doi-asserted-by":"publisher","DOI":"10.1111\/j.1467-842X.1992.tb01356.x"},{"key":"e_1_2_12_60_1","doi-asserted-by":"publisher","DOI":"10.1016\/0167-9473(91)90115-I"},{"key":"e_1_2_12_61_1","doi-asserted-by":"publisher","DOI":"10.2307\/2529876"},{"key":"e_1_2_12_62_1","doi-asserted-by":"publisher","DOI":"10.1109\/5.726791"},{"key":"e_1_2_12_63_1","doi-asserted-by":"publisher","DOI":"10.1007\/BF02294188"},{"key":"e_1_2_12_64_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.csda.2008.11.019"},{"key":"e_1_2_12_65_1","doi-asserted-by":"publisher","DOI":"10.2307\/3316063"},{"key":"e_1_2_12_66_1","doi-asserted-by":"publisher","DOI":"10.1016\/S0169-7161(05)25016-2"},{"key":"e_1_2_12_67_1","first-page":"199","volume-title":"Handbook of Statistics","author":"McLachlan G. J.","year":"1982"},{"key":"e_1_2_12_68_1","doi-asserted-by":"publisher","DOI":"10.1002\/9780470191613"},{"key":"e_1_2_12_69_1","doi-asserted-by":"publisher","DOI":"10.1002\/0471721182"},{"key":"e_1_2_12_70_1","unstructured":"Neal R. M.(1993).Probabilistic inference using Markov Chain Monte Carlo methods(Technical Report No. CRG\u2010TR\u201093\u20101). Department of Computer Science University of Toronto."},{"key":"e_1_2_12_71_1","doi-asserted-by":"publisher","DOI":"10.1093\/bioinformatics\/btl165"},{"key":"e_1_2_12_72_1","doi-asserted-by":"publisher","DOI":"10.1002\/widm.1198"},{"key":"e_1_2_12_73_1","doi-asserted-by":"publisher","DOI":"10.1002\/widm.1246"},{"key":"e_1_2_12_74_1","doi-asserted-by":"publisher","DOI":"10.1162\/NECO_a_00892"},{"key":"e_1_2_12_75_1","doi-asserted-by":"publisher","DOI":"10.1111\/stan.12093"},{"key":"e_1_2_12_76_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.csda.2014.01.011"},{"key":"e_1_2_12_77_1","doi-asserted-by":"publisher","DOI":"10.1002\/sam.11366"},{"key":"e_1_2_12_78_1","doi-asserted-by":"publisher","DOI":"10.1080\/01621459.1972.10482378"},{"key":"e_1_2_12_79_1","doi-asserted-by":"publisher","DOI":"10.1080\/01621459.1978.10480085"},{"key":"e_1_2_12_80_1","doi-asserted-by":"publisher","DOI":"10.1109\/5.18626"},{"key":"e_1_2_12_81_1","doi-asserted-by":"publisher","DOI":"10.1109\/MASSP.1986.1165342"},{"key":"e_1_2_12_82_1","first-page":"763","article-title":"How many iterations in the Gibbs sampler?","volume":"4","author":"Raftery A. E.","year":"1992","journal-title":"Bayesian Statistics"},{"key":"e_1_2_12_83_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-7908-2736-1_42"},{"key":"e_1_2_12_84_1","doi-asserted-by":"publisher","DOI":"10.1007\/b98886"},{"key":"e_1_2_12_85_1","doi-asserted-by":"publisher","DOI":"10.1002\/0470013192.bsa239"},{"key":"e_1_2_12_86_1","doi-asserted-by":"publisher","DOI":"10.1080\/01621459.1971.10482356"},{"key":"e_1_2_12_87_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2007.70775"},{"key":"e_1_2_12_88_1","doi-asserted-by":"publisher","DOI":"10.1111\/1467-9868.00095"},{"key":"e_1_2_12_89_1","doi-asserted-by":"publisher","DOI":"10.1214\/10-STS351"},{"key":"e_1_2_12_90_1","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9780511755453"},{"key":"e_1_2_12_91_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11634-011-0096-5"},{"key":"e_1_2_12_92_1","doi-asserted-by":"publisher","DOI":"10.1111\/rssb.12009"},{"key":"e_1_2_12_93_1","doi-asserted-by":"publisher","DOI":"10.1214\/aos\/1176344136"},{"key":"e_1_2_12_94_1","doi-asserted-by":"publisher","DOI":"10.2307\/2529003"},{"key":"e_1_2_12_95_1","doi-asserted-by":"publisher","DOI":"10.32614\/RJ-2016-021"},{"key":"e_1_2_12_96_1","doi-asserted-by":"publisher","DOI":"10.1201\/b11038"},{"key":"e_1_2_12_97_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11222-005-4787-7"},{"key":"e_1_2_12_98_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11222-008-9055-1"},{"key":"e_1_2_12_99_1","unstructured":"Smyth P.(1996).Clustering sequences with hidden markov models.Paper presented at the Advances in Neural Information Processing Systems (pp. 648\u2013654) 9 NIPS."},{"key":"e_1_2_12_100_1","doi-asserted-by":"crossref","unstructured":"Snoussi H.&Mohammad\u2010Djafari A.(2002). Penalized maximum likelihood for multivariate Gaussian mixture. In R. L. Fry (Ed.) Bayesian Inference and Maximum Entropy Methods(pp. 36 \u201046). College Park Maryland: American Institute of Physics.","DOI":"10.1063\/1.1477037"},{"key":"e_1_2_12_101_1","unstructured":"Snoussi H.&Mohammad\u2010Djafari A.(2005).Degeneracy and likelihood penalization in multivariate gaussian mixture models. Technical report ISTIT\/M2S University of Technology of Troyes."},{"key":"e_1_2_12_102_1","unstructured":"Stephens M.(1997).Bayesian methods for mixtures of normal distributions.(Ph.D. thesis) University of Oxford."},{"key":"e_1_2_12_103_1","volume-title":"Statistical analysis of finite mixture distributions","author":"Titterington D.","year":"1985"},{"key":"e_1_2_12_104_1","doi-asserted-by":"publisher","DOI":"10.1109\/TASE.2013.2256349"},{"key":"e_1_2_12_105_1","doi-asserted-by":"publisher","DOI":"10.1016\/0167-9473(89)90043-1"},{"key":"e_1_2_12_106_1","doi-asserted-by":"publisher","DOI":"10.1080\/01621459.1996.10476679"},{"key":"e_1_2_12_107_1","doi-asserted-by":"publisher","DOI":"10.1023\/A:1020779827503"},{"key":"e_1_2_12_108_1","doi-asserted-by":"crossref","unstructured":"Wang K. Ng S. &McLachlan G. J.(2009).Multivariate skew t mixture models: Applications to fluorescence\u2010activated cell sorting data.Paper presented at the 2009 Digital Image Computing: Techniques and Applications (pp. 526\u2013531) Melbourne Australia.","DOI":"10.1109\/DICTA.2009.88"},{"key":"e_1_2_12_109_1","doi-asserted-by":"publisher","DOI":"10.1214\/aos\/1176346060"},{"key":"e_1_2_12_110_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2003.12.018"},{"key":"e_1_2_12_111_1","doi-asserted-by":"publisher","DOI":"10.1081\/BIP-120008848"},{"key":"e_1_2_12_112_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2012.04.031"},{"key":"e_1_2_12_113_1","doi-asserted-by":"publisher","DOI":"10.1093\/bioinformatics\/17.10.977"},{"key":"e_1_2_12_114_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.csda.2010.04.002"}],"container-title":["WIREs Data Mining and Knowledge Discovery"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.wiley.com\/onlinelibrary\/tdm\/v1\/articles\/10.1002%2Fwidm.1298","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/widm.1298","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/full-xml\/10.1002\/widm.1298","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/wires.onlinelibrary.wiley.com\/doi\/am-pdf\/10.1002\/widm.1298","content-type":"application\/pdf","content-version":"am","intended-application":"syndication"},{"URL":"https:\/\/wires.onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/widm.1298","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,14]],"date-time":"2024-07-14T06:05:32Z","timestamp":1720937132000},"score":1,"resource":{"primary":{"URL":"https:\/\/wires.onlinelibrary.wiley.com\/doi\/10.1002\/widm.1298"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,1,18]]},"references-count":113,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2019,7]]}},"alternative-id":["10.1002\/widm.1298"],"URL":"https:\/\/doi.org\/10.1002\/widm.1298","archive":["Portico"],"relation":{},"ISSN":["1942-4787","1942-4795"],"issn-type":[{"value":"1942-4787","type":"print"},{"value":"1942-4795","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,1,18]]},"assertion":[{"value":"2018-04-03","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2018-12-09","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2019-01-18","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}