{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,4]],"date-time":"2024-07-04T05:22:49Z","timestamp":1720070569310},"reference-count":90,"publisher":"Wiley","issue":"2","license":[{"start":{"date-parts":[[2022,9,9]],"date-time":"2022-09-09T00:00:00Z","timestamp":1662681600000},"content-version":"am","delay-in-days":365,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#am"},{"start":{"date-parts":[[2021,9,9]],"date-time":"2021-09-09T00:00:00Z","timestamp":1631145600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"}],"funder":[{"DOI":"10.13039\/100000001","name":"National Science Foundation","doi-asserted-by":"publisher","award":["SHF\u20101910197","SHF\u20101943114"],"id":[{"id":"10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["Softw Pract Exp"],"published-print":{"date-parts":[[2022,2]]},"abstract":"Abstract<\/jats:title>Growing constraints on memory utilization, power consumption, and I\/O throughput have increasingly become limiting factors to the advancement of high performance computing (HPC) and edge computing applications. IEEE\u2010754 floating\u2010point types have been the de facto standard for floating\u2010point number systems for decades, but the drawbacks of this numerical representation leave much to be desired. Alternative representations are gaining traction, both in HPC and machine learning environments. Posits have recently been proposed as a drop\u2010in replacement for the IEEE\u2010754 floating\u2010point representation. We survey the state\u2010of\u2010the\u2010art and state\u2010of\u2010the\u2010practice in the development and use of posits in edge computing and HPC. The current literature supports posits as a promising alternative to traditional floating\u2010point systems, both as a stand\u2010alone replacement and in a mixed\u2010precision environment. Development and standardization of the posit type is ongoing, and much research remains to explore the application of posits in different domains, how to best implement them in hardware, and where they fit with other numerical representations.<\/jats:p>","DOI":"10.1002\/spe.3022","type":"journal-article","created":{"date-parts":[[2021,9,9]],"date-time":"2021-09-09T17:00:12Z","timestamp":1631206812000},"page":"619-635","update-policy":"http:\/\/dx.doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Posits and the state of numerical representations in the age of exascale and edge computing"],"prefix":"10.1002","volume":"52","author":[{"given":"Alexandra","family":"Poulos","sequence":"first","affiliation":[{"name":"Holcombe Department of Electrical and Computer Engineering Clemson University Clemson South Carolina USA"}]},{"given":"Sally A.","family":"McKee","sequence":"additional","affiliation":[{"name":"Holcombe Department of Electrical and Computer Engineering Clemson University Clemson South Carolina USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7191-4422","authenticated-orcid":false,"given":"Jon C.","family":"Calhoun","sequence":"additional","affiliation":[{"name":"Holcombe Department of Electrical and Computer Engineering Clemson University Clemson South Carolina USA"}]}],"member":"311","published-online":{"date-parts":[[2021,9,9]]},"reference":[{"key":"e_1_2_11_2_1","doi-asserted-by":"publisher","DOI":"10.1177\/1094342019853336"},{"key":"e_1_2_11_3_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.future.2013.01.010"},{"key":"e_1_2_11_4_1","doi-asserted-by":"crossref","unstructured":"IEEE standard for floating\u2010point arithmetic. IEEE Std 754\u20102019 (Revision of IEEE 754\u20102008); 2019:1\u201084.https:\/\/doi.org\/10.1109\/IEEESTD.2019.8766229","DOI":"10.1109\/IEEESTD.2019.8766229"},{"key":"e_1_2_11_5_1","unstructured":"SoH.Introduction to fixed point number representation.https:\/\/inst.eecs.berkeley.edu\/\u223ccs61c\/sp06\/handout\/fixedpt.html. Accessed 2021."},{"key":"e_1_2_11_6_1","doi-asserted-by":"publisher","DOI":"10.1137\/1.9781611975581"},{"key":"e_1_2_11_7_1","unstructured":"The GNU C library reference manual appendix A.5.3.1.https:\/\/www.gnu.org\/software\/libc\/manual\/html_node\/Floating\u2010Point\u2010Concepts.html. Accessed 2021."},{"key":"e_1_2_11_8_1","volume-title":"High Performance Computing","author":"Severance C","year":"2010"},{"key":"e_1_2_11_9_1","volume-title":"An Interview with the Old Man of Floating\u2010Point","author":"Severance C.","year":"1998"},{"key":"e_1_2_11_10_1","unstructured":"Stannered.https:\/\/commons.wikimedia.org\/w\/index.php?curid=3357169. Accessed 2021."},{"key":"e_1_2_11_11_1","doi-asserted-by":"crossref","unstructured":"SampsonA DietlW FortunaE GnanapragasamD CezeL GrossmanD.EnerJ: approximate data types for safe and general low\u2010power computation. Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation PLDI '11. Association for Computing Machinery; 2011:164\u2010174; New York NY.https:\/\/doi.org\/10.1145\/1993498.1993518","DOI":"10.1145\/1993498.1993518"},{"key":"e_1_2_11_12_1","unstructured":"GuptaG.What's the difference between single\u2010 double\u2010 multi\u2010 and mixed\u2010precision computing? 2019.https:\/\/blogs.nvidia.com\/blog\/2019\/11\/15\/whats\u2010the\u2010difference\u2010between\u2010single\u2010double\u2010multi\u2010and\u2010mixed\u2010precision\u2010computing\/"},{"key":"e_1_2_11_13_1","unstructured":"Training with mixed precision.https:\/\/docs.nvidia.com\/deeplearning\/performance\/mixed\u2010precision\u2010training\/index.html. Accessed 2021."},{"key":"e_1_2_11_14_1","unstructured":"What every computer scientist should know about floating\u2010point arithmetic; 2000.https:\/\/docs.oracle.com\/cd\/E19957\u201001\/806\u20103568\/ncg_goldberg.html"},{"key":"e_1_2_11_15_1","doi-asserted-by":"publisher","DOI":"10.1145\/227699.227701"},{"key":"e_1_2_11_16_1","doi-asserted-by":"crossref","unstructured":"EsmaeilzadehH BlemE AmantRS SankaralingamK BurgerD.Dark silicon and the end of multicore scaling. Proceedings of the 2011 38th Annual International Symposium on Computer Architecture (ISCA); 2011:365\u2010376.","DOI":"10.1145\/2000064.2000108"},{"key":"e_1_2_11_17_1","doi-asserted-by":"publisher","DOI":"10.1109\/MCSE.2017.29"},{"key":"e_1_2_11_18_1","volume-title":"Supercomputing 2017 ACM Student Research Competition Poster","author":"Harrington P","year":"2017"},{"key":"e_1_2_11_19_1","unstructured":"JohnsonJ.Making floating point math highly efficient for AI hardware; 2018.https:\/\/engineering.fb.com\/2018\/11\/08\/ai\u2010research\/floating\u2010point\u2010math\/"},{"key":"e_1_2_11_20_1","unstructured":"Bfloat16: the secret to high performance on cloud TPUs.https:\/\/cloud.google.com\/blog\/products\/ai\u2010machine\u2010learning\/bfloat16\u2010the\u2010secret\u2010to\u2010high\u2010performance\u2010on\u2010cloud\u2010tpus. Accessed 2021."},{"key":"e_1_2_11_21_1","unstructured":"bfloat16 floating\u2010point format.https:\/\/handwiki.org\/wiki\/Bfloat16_floating\u2010point_format. Accessed 2021."},{"key":"e_1_2_11_22_1","volume-title":"Mixed Precision Training","author":"Micikevicius P","year":"2018"},{"key":"e_1_2_11_23_1","unstructured":"KharyaP.What is the tensor\u2010float\u201032 precision format?https:\/\/blogs.nvidia.com\/blog\/2020\/05\/14\/tensorfloat\u201032\u2010precision\u2010format\/. Accessed 2021."},{"key":"e_1_2_11_24_1","unstructured":"NVIDIAAmpere architecture in\u2010depth.https:\/\/developer.nvidia.com\/blog\/nvidia\u2010ampere\u2010architecture\u2010in\u2010depth\/. Accessed 2021."},{"key":"e_1_2_11_25_1","unstructured":"Automatic mixed precision for deep learning.https:\/\/developer.nvidia.com\/automatic\u2010mixed\u2010precision"},{"key":"e_1_2_11_26_1","doi-asserted-by":"publisher","DOI":"10.14529\/jsfi170206"},{"key":"e_1_2_11_27_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.dsp.2020.102762"},{"key":"e_1_2_11_28_1","unstructured":"GustafsonJ. Stanford seminar: beyond floating point: next generation computer arithmetic.https:\/\/www.youtube.com\/watch?v=aP0Y1uAA\u20102Y. Accessed 2021."},{"key":"e_1_2_11_29_1","unstructured":"Posit standard documentation release 4.9\u2010draft. technical report posit working group; 2020.https:\/\/00248909357804553642.googlegroups.com\/attach\/7967db941064b\/PositStandard4.9.pdf?part=0.1.1&view=1&view=1&vt=ANaJVrEkctbXTCx1pBtrQErZYo7WTfi1Fibi2\u2010XyqKJvwCLf2M4Z9Lb9qnpEvMH32qY6_tYJY7m3CyN1T7JDU404U6xil7kZXoqXxmBHJPZKb6_uSiuByTc. Accessed 2021."},{"key":"e_1_2_11_30_1","doi-asserted-by":"crossref","unstructured":"UguenY ForgetL&deDinechinFEvaluating the hardware cost of the posit number system. Proceedings of the 2019 29th International Conference on Field Programmable Logic and Applications (FPL); 2019:106\u2010113.","DOI":"10.1109\/FPL.2019.00026"},{"key":"e_1_2_11_31_1","volume-title":"Posit Arithmetic","author":"Gustafson J","year":"2017"},{"key":"e_1_2_11_32_1","unstructured":"SoftPosit.https:\/\/gitlab.com\/cerlane\/SoftPosit. Accessed 2021."},{"key":"e_1_2_11_33_1","unstructured":"SoftPosit\u2010Python.https:\/\/gitlab.com\/cerlane\/SoftPosit\u2010Python. Accessed 2021."},{"key":"e_1_2_11_34_1","unstructured":"SoftPosit\u2010Math.https:\/\/gitlab.com\/cerlane\/softposit\u2010math. Accessed 2021."},{"key":"e_1_2_11_35_1","unstructured":"Gu\u00e9rinC.bfp: beyond floating\u2010point.https:\/\/github.com\/libcg\/bfp. Accessed 2021."},{"key":"e_1_2_11_36_1","unstructured":"RuffaldiE.cppPosit.https:\/\/github.com\/eruffaldi\/cppPosit. Accessed 2021."},{"key":"e_1_2_11_37_1","unstructured":"OmtzigtETL GottschlingP SeligmanM ZornW.Universal numbers library: design and implementation of a high\u2010performance reproducible number systems library; 2020. arXiv:2012.11011."},{"key":"e_1_2_11_38_1","doi-asserted-by":"publisher","DOI":"10.1145\/3446210"},{"key":"e_1_2_11_39_1","doi-asserted-by":"crossref","unstructured":"JaiswalMK SoHK.Architecture generator for type\u20103 unum posit adder\/subtractor. Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS); 2018:1\u20105.","DOI":"10.1109\/ISCAS.2018.8351142"},{"key":"e_1_2_11_40_1","doi-asserted-by":"crossref","unstructured":"JaiswalM SoH.Universal number posit arithmetic generator on FPGA. Proceedings of the 2018 Design Automation Test in Europe Conference Exhibition; 2018:1159\u20101162","DOI":"10.23919\/DATE.2018.8342187"},{"key":"e_1_2_11_41_1","unstructured":"JaiswalMK.https:\/\/github.com\/manish\u2010kj\/Posit\u2010HDL\u2010Arithmetic. Accessed 2021."},{"key":"e_1_2_11_42_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2920936"},{"key":"e_1_2_11_43_1","unstructured":"JaiswalMK.https:\/\/github.com\/manish\u2010kj\/PACoGen. Accessed 2021."},{"key":"e_1_2_11_44_1","doi-asserted-by":"crossref","unstructured":"ChaurasiyaR GustafsonJ.Parameterized posit arithmetic hardware generator. Proceedings of the 2018 IEEE 36th International Conference on Computer Design (ICCD); 2018:334\u2010341.","DOI":"10.1109\/ICCD.2018.00057"},{"key":"e_1_2_11_45_1","doi-asserted-by":"publisher","DOI":"10.3390\/electronics9101622"},{"key":"e_1_2_11_46_1","unstructured":"JohnsonJ.Rethinking floating point for deep learning; 2018.http:\/\/arxiv.org\/abs\/1811.01721"},{"key":"e_1_2_11_47_1","doi-asserted-by":"crossref","unstructured":"WatermanA LeeY PattersonDA AsanoviaK.The RISC\u2010v instruction set manual volume I: user\u2010level ISA version 2.0. technical report UCB\/EECS\u20102014\u201054 EECS Department University of California Berkeley; 2014.http:\/\/www2.eecs.berkeley.edu\/Pubs\/TechRpts\/2014\/EECS\u20102014\u201054.html","DOI":"10.21236\/ADA605735"},{"key":"e_1_2_11_48_1","unstructured":"GustafsonJ.RISC\u2010V proposed extension for 32\u2010bit posits; 2018.https:\/\/posithub.org\/docs\/RISC\u2010V\/RISC\u2010V.htm"},{"key":"e_1_2_11_49_1","unstructured":"TiwariS GalaN RebeiroC KamakotiV.PERI: a posit enabled RISC\u2010V core; 2019. arXiv:1908.01466 [cs] 2019.http:\/\/arxiv.org\/abs\/1908.01466"},{"key":"e_1_2_11_50_1","unstructured":"JainR SharmaN MerchantF PatkarS LeupersR.CLARINET: a RISC\u2010V based framework for posit arithmetic empiricism; 2020.https:\/\/arxiv.org\/abs\/2006.00364."},{"key":"e_1_2_11_51_1","unstructured":"CococcioniM RossiF RuffaldiE.A fast approximation of the hyperbolic tangent when using posit numbers and its application to deep neural networks; 2020.https:\/\/doi.org\/10.1007\/978\u20103\u2010030\u201037277\u20104_25"},{"key":"e_1_2_11_52_1","doi-asserted-by":"publisher","DOI":"10.3390\/s20051515"},{"key":"e_1_2_11_53_1","doi-asserted-by":"crossref","unstructured":"JuddP AlbericioJ HetheringtonT AamodtTM JergerNE MoshovosA.Proteus: exploiting numerical precision variability in deep neural networks. Proceedings of the 2016 International Conference on SupercomputingICS '16. Association for Computing Machinery; 2016;https:\/\/doi.org\/10.1145\/2925426.2926294","DOI":"10.1145\/2925426.2926294"},{"key":"e_1_2_11_54_1","article-title":"Hardware\u2010oriented approximation of convolutional neural networks","author":"Gysel P","year":"2016","journal-title":"CoRR"},{"issue":"1","key":"e_1_2_11_55_1","first-page":"6869","article-title":"Quantized neural networks: training neural networks with low precision weights and activations","volume":"18","author":"Hubara I","year":"2017","journal-title":"J Mach Learn Res"},{"key":"e_1_2_11_56_1","unstructured":"MishraAK MarrD.Apprentice: using knowledge distillation techniques to improve low\u2010precision network accuracy. ArXiv 2018; abs\/1711.05852."},{"key":"e_1_2_11_57_1","doi-asserted-by":"crossref","unstructured":"Fatemi LangroudiSH PanditT KudithipudiD.Deep learning inference on embedded devices: fixed\u2010point vs posit. Proceedings of the 2018 1st Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications (EMC2); 2018:19\u201023","DOI":"10.1109\/EMC2.2018.00012"},{"key":"e_1_2_11_58_1","doi-asserted-by":"crossref","unstructured":"CococcioniM RuffaldiE SaponaraS.Exploiting posit arithmetic for deep neural networks in autonomous driving applications. Proceedings of the 2018 International Conference of Electrical and Electronic Technologies for Automotive; 2018:1\u20106","DOI":"10.23919\/EETA.2018.8493233"},{"key":"e_1_2_11_59_1","doi-asserted-by":"crossref","unstructured":"CococcioniM RossiF RuffaldiE SaponaraS.Novel arithmetics to accelerate machine learning classifiers in autonomous driving applications. Proceedings of the 2019 26th IEEE International Conference on Electronics Circuits and Systems (ICECS); 2019:779\u2010782.","DOI":"10.1109\/ICECS46596.2019.8965031"},{"key":"e_1_2_11_60_1","unstructured":"BernhardssonE Martin AumuellerM.Erikbern\/ann\u2010benchmarks: benchmarks of approximate nearest neighbor libraries in python."},{"key":"e_1_2_11_61_1","doi-asserted-by":"crossref","unstructured":"LangroudiHF CarmichaelZ GustafsonJL KudithipudiD.PositNN framework: tapered precision deep learning inference for the edge. Proceedings of the 2019 IEEE Space Computing Conference (SCC); 2019:53\u201059.","DOI":"10.1109\/SpaceComp.2019.00011"},{"key":"e_1_2_11_62_1","doi-asserted-by":"publisher","DOI":"10.1145\/3316279.3316282"},{"key":"e_1_2_11_63_1","doi-asserted-by":"crossref","unstructured":"CarmichaelZ LangroudiHF KhazanovC LillieJ GustafsonJL&KudithipudiDDeep positron: a deep neural network using the posit number system. Proceedings of the 2019 Design Automation Test in Europe Conference Exhibition; 2019:1421\u20101426","DOI":"10.23919\/DATE.2019.8715262"},{"key":"e_1_2_11_64_1","doi-asserted-by":"crossref","unstructured":"LangroudiHF KariaV GustafsonJL KudithipudiD.Adaptive posit: parameter aware numerical format for deep learning inference on the edge. Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops; 2020.","DOI":"10.1109\/CVPRW50498.2020.00371"},{"key":"e_1_2_11_65_1","doi-asserted-by":"publisher","DOI":"10.1109\/TC.2020.2985971"},{"key":"e_1_2_11_66_1","doi-asserted-by":"publisher","DOI":"10.1029\/2020MS002246"},{"key":"e_1_2_11_67_1","doi-asserted-by":"crossref","unstructured":"Kl\u00f6werM D\u00fcbenPD PalmerTN.Posits as an alternative to floats for weather and climate models. Proceedings of the Conference for Next Generation Arithmetic 2019CoNGA'19. Association for Computing Machinery; 2019; ACM New York NY.","DOI":"10.1145\/3316279.3316281"},{"key":"e_1_2_11_68_1","doi-asserted-by":"crossref","unstructured":"LimJP ShachnaiM NagarakatteS.Approximating trigonometric functions for posits using the CORDIC method. Proceedings of the 17th ACM International Conference on Computing Frontiers CF '20; 2020:19\u201028; Association for Computing Machinery New York NY.https:\/\/doi.org\/10.1145\/3387902.3392632","DOI":"10.1145\/3387902.3392632"},{"key":"e_1_2_11_69_1","doi-asserted-by":"crossref","unstructured":"deDinechinF ForgetL MullerJM UguenY.Posits: the good the bad and the ugly. Proceedings of the Conference for Next Generation Arithmetic 2019CoNGA'19. Association for Computing Machinery; 2019; ACM New York NY.https:\/\/doi.org\/10.1145\/3316279.3316285","DOI":"10.1145\/3316279.3316285"},{"key":"e_1_2_11_70_1","volume-title":"Elementary Functions: Algorithms and Implementation","author":"Muller JM","year":"2005"},{"key":"e_1_2_11_71_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-76526-6_5"},{"key":"e_1_2_11_72_1","doi-asserted-by":"crossref","unstructured":"DiS CappelloF.Fast error\u2010bounded lossy HPC data compression with SZ. Proceedings of the 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS); 2016:730\u2010739.","DOI":"10.1109\/IPDPS.2016.11"},{"key":"e_1_2_11_73_1","doi-asserted-by":"crossref","unstructured":"LiangX DiS TaoD et al.Improving performance of data dumping with lossy compression for scientific simulation. Proceedings of the 2019 IEEE International Conference on Cluster Computing (CLUSTER); 2019:1\u201011.","DOI":"10.1109\/CLUSTER.2019.8891037"},{"key":"e_1_2_11_74_1","doi-asserted-by":"crossref","unstructured":"LiangX DiS TaoD et al.Error\u2010controlled lossy compression optimized for high compression ratios of scientific datasets. Proceedings of the 2018 IEEE International Conference on Big Data (Big Data); 2018:438\u2010447.","DOI":"10.1109\/BigData.2018.8622520"},{"key":"e_1_2_11_75_1","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2014.2346458"},{"key":"e_1_2_11_76_1","doi-asserted-by":"crossref","unstructured":"AlouaniI Ben KhalifaA MerchantF LeupersR.An investigation on inherent robustness of posit data representation. Proceedings of the 2021 34th International Conference on VLSI Design and 2021 20th International Conference on Embedded Systems (VLSID); 2021:276\u2010281.","DOI":"10.1109\/VLSID51830.2021.00052"},{"key":"e_1_2_11_77_1","doi-asserted-by":"publisher","DOI":"10.1177\/1094342014522573"},{"key":"e_1_2_11_78_1","doi-asserted-by":"crossref","unstructured":"SridharanV DeBardelebenN BlanchardS et al.Memory errors in modern systems: the good the bad and the ugly. Proceedings of the 20th International Conference on Architectural Support for Programming Languages and Operating SystemsASPLOS '15. Association for Computing Machinery; 2015:297\u2010310; New York NY.https:\/\/doi.org\/10.1145\/2775054.2694348","DOI":"10.1145\/2694344.2694348"},{"key":"e_1_2_11_79_1","doi-asserted-by":"publisher","DOI":"10.1109\/TDSC.2004.2"},{"key":"e_1_2_11_80_1","doi-asserted-by":"publisher","DOI":"10.2172\/1089338"},{"key":"e_1_2_11_81_1","doi-asserted-by":"crossref","unstructured":"CalhounJ SnirM OlsonLN GroppWD.Towards a more complete understanding of SDC propagation. Proceedings of the 26th International Symposium on High\u2010Performance Parallel and Distributed Computing HPDC '17. Association for Computing Machinery; 2017:131\u2010142; ACM New York NY.https:\/\/doi.org\/10.1145\/3078597.3078617","DOI":"10.1145\/3078597.3078617"},{"key":"e_1_2_11_82_1","doi-asserted-by":"publisher","DOI":"10.1109\/TC.1984.1676475"},{"key":"e_1_2_11_83_1","doi-asserted-by":"publisher","DOI":"10.14529\/jsfi140101"},{"key":"e_1_2_11_84_1","doi-asserted-by":"crossref","unstructured":"GuptaS PatelT EngelmannC TiwariD.Failures in large scale systems: long\u2010term measurement analysis and implications. Proceedings of the International Conference for High Performance Computing Networking Storage and AnalysisSC '17; 2017; Association for Computing Machinery New York NY. 10.1145\/3126908.3126937","DOI":"10.1145\/3126908.3126937"},{"key":"e_1_2_11_85_1","doi-asserted-by":"crossref","unstructured":"GottschoM SchoenyC DolecekL GuptaP.Software\u2010defined error\u2010correcting codes. Proceedings of the 2016 46th Annual IEEE\/IFIP International Conference on Dependable Systems and Networks Workshop (DSN\u2010W); 2016:276\u2010282.","DOI":"10.1109\/DSN-W.2016.67"},{"key":"e_1_2_11_86_1","doi-asserted-by":"crossref","unstructured":"PoulosA WallaceD RobeyR et al.Improving application resilience by extending error correction with contextual information. Proceedings of the 2018 IEEE\/ACM 8th Workshop on Fault Tolerance for HPC at eXtreme Scale (FTXS); 2018:19\u201028.","DOI":"10.1109\/FTXS.2018.00006"},{"key":"e_1_2_11_87_1","doi-asserted-by":"crossref","unstructured":"WallaceD JonesWM RobeyR MonroeL Grov\u00e9T DeBardelebenN.Impact of contextual error correction techniques in CLAMR. In: Proceedings of the 2020 SoutheastCon; 2020:1\u20102.","DOI":"10.1109\/SoutheastCon44009.2020.9249734"},{"key":"e_1_2_11_88_1","doi-asserted-by":"crossref","unstructured":"FangB GuanQ DebardelebenN PattabiramanK RipeanuM.LetGo: a lightweight continuous framework for HPC applications under failures. Proceedings of the 26th International Symposium on High\u2010Performance Parallel and Distributed ComputingHPDC '17. Association for Computing Machinery; 2017:117\u2010130; ACM New York NY.","DOI":"10.1145\/3078597.3078609"},{"key":"e_1_2_11_89_1","doi-asserted-by":"crossref","unstructured":"FangB HalawaH PattabiramanK RipeanuM KrishnamoorthyS.BonVoision: leveraging spatial data smoothness for recovery from memory soft errors. Proceedings of the ACM International Conference on Supercomputing ICS '19; 2019:484\u2010496; Association for Computing Machinery New York NY.","DOI":"10.1145\/3330345.3330388"},{"key":"e_1_2_11_90_1","doi-asserted-by":"crossref","unstructured":"HenryG TangPTP HeineckeA.Leveraging the bfloat16 artificial intelligence datatype for higher\u2010precision computations; 2019.","DOI":"10.1109\/ARITH.2019.00019"},{"key":"e_1_2_11_91_1","doi-asserted-by":"crossref","unstructured":"DefourD De OliveiraCP IstoanM PetitE.Shadow computation with BFloat16 to compute numerical accuracy. Proceedings of the IEEE 28th Symposium on Computer Arithmetic (ARITH) Virtual Conference; 2021; France.","DOI":"10.1109\/ARITH51176.2021.00017"}],"container-title":["Software: Practice and Experience"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/spe.3022","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/full-xml\/10.1002\/spe.3022","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/am-pdf\/10.1002\/spe.3022","content-type":"application\/pdf","content-version":"am","intended-application":"syndication"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/spe.3022","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,24]],"date-time":"2023-08-24T14:14:40Z","timestamp":1692886480000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1002\/spe.3022"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9,9]]},"references-count":90,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2022,2]]}},"alternative-id":["10.1002\/spe.3022"],"URL":"https:\/\/doi.org\/10.1002\/spe.3022","archive":["Portico"],"relation":{},"ISSN":["0038-0644","1097-024X"],"issn-type":[{"value":"0038-0644","type":"print"},{"value":"1097-024X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,9,9]]},"assertion":[{"value":"2021-05-31","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2021-08-12","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2021-09-09","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}