{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,8,26]],"date-time":"2023-08-26T13:13:00Z","timestamp":1693055580411},"reference-count":18,"publisher":"Wiley","issue":"3","license":[{"start":{"date-parts":[[2022,11,22]],"date-time":"2022-11-22T00:00:00Z","timestamp":1669075200000},"content-version":"am","delay-in-days":365,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#am"},{"start":{"date-parts":[[2021,11,22]],"date-time":"2021-11-22T00:00:00Z","timestamp":1637539200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"}],"funder":[{"DOI":"10.13039\/100000121","name":"Division of Mathematical Sciences","doi-asserted-by":"publisher","award":["DMS\u20102054253"],"id":[{"id":"10.13039\/100000121","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000050","name":"National Heart, Lung, and Blood Institute","doi-asserted-by":"publisher","award":["HL150374"],"id":[{"id":"10.13039\/100000050","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000051","name":"National Human Genome Research Institute","doi-asserted-by":"publisher","award":["HG006139"],"id":[{"id":"10.13039\/100000051","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000062","name":"National Institute of Diabetes and Digestive and Kidney Diseases","doi-asserted-by":"publisher","award":["DK106116"],"id":[{"id":"10.13039\/100000062","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000057","name":"National Institute of General Medical Sciences","doi-asserted-by":"publisher","award":["GM141798"],"id":[{"id":"10.13039\/100000057","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["Statistical Analysis"],"published-print":{"date-parts":[[2022,6]]},"abstract":"Abstract<\/jats:title>Linear mixed models are widely used for analyzing longitudinal datasets, and the inference for variance component parameters relies on the bootstrap method. However, health systems and technology companies routinely generate massive longitudinal datasets that make the traditional bootstrap method infeasible. To solve this problem, we extend the highly scalable bag of little bootstraps method for independent data to longitudinal data and develop a highly efficient Julia package MixedModelsBLB.jl.<\/jats:styled-content> Simulation experiments and real data analysis demonstrate the favorable statistical performance and computational advantages of our method compared to the traditional bootstrap method. For the statistical inference of variance components, it achieves 200 times speedup on the scale of 1\u00a0million subjects (20\u00a0million total observations), and is the only currently available tool that can handle more than 10\u00a0million subjects (200\u00a0million total observations) using desktop computers.<\/jats:p>","DOI":"10.1002\/sam.11563","type":"journal-article","created":{"date-parts":[[2021,11,22]],"date-time":"2021-11-22T09:31:36Z","timestamp":1637573496000},"page":"314-321","update-policy":"http:\/\/dx.doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Bag of little bootstraps for massive and distributed longitudinal data"],"prefix":"10.1002","volume":"15","author":[{"given":"Xinkai","family":"Zhou","sequence":"first","affiliation":[{"name":"Department of Biostatistics University of California Los Angeles California USA"}]},{"given":"Jin J.","family":"Zhou","sequence":"additional","affiliation":[{"name":"Department of Medicine University of California Los Angeles California USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1320-7118","authenticated-orcid":false,"given":"Hua","family":"Zhou","sequence":"additional","affiliation":[{"name":"Department of Biostatistics University of California Los Angeles California USA"},{"name":"Department of Computational Medicine University of California Los Angeles California USA"}]}],"member":"311","published-online":{"date-parts":[[2021,11,22]]},"reference":[{"key":"e_1_2_11_2_1","doi-asserted-by":"publisher","DOI":"10.18637\/jss.v067.i01"},{"key":"e_1_2_11_3_1","doi-asserted-by":"publisher","DOI":"10.1046\/j.1365-2869.2003.00337.x"},{"issue":"1","key":"e_1_2_11_4_1","first-page":"1","article-title":"Resampling fewer than n observations: Gains, losses, and remedies for losses","volume":"7","author":"Bickel P. J.","year":"1997","journal-title":"Stat. Sin."},{"key":"e_1_2_11_5_1","doi-asserted-by":"publisher","DOI":"10.1007\/0-387-30065-1_4"},{"key":"e_1_2_11_6_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-0-387-76721-5_1"},{"key":"e_1_2_11_7_1","doi-asserted-by":"publisher","DOI":"10.1111\/j.1467\u20109868.2004.00438.x"},{"key":"e_1_2_11_8_1","doi-asserted-by":"publisher","DOI":"10.1214\/aos\/1176344552"},{"key":"e_1_2_11_9_1","doi-asserted-by":"publisher","DOI":"10.1111\/biom.13506"},{"key":"e_1_2_11_10_1","doi-asserted-by":"publisher","DOI":"10.18637\/jss.v059.i09"},{"key":"e_1_2_11_11_1","doi-asserted-by":"publisher","DOI":"10.1016\/S0140-6736(10)60576-4"},{"key":"e_1_2_11_12_1","unstructured":"S. G.Johnson The NLopt nonlinear\u2010optimization package.http:\/\/github.com\/stevengj\/nlopt 2020."},{"key":"e_1_2_11_13_1","doi-asserted-by":"publisher","DOI":"10.1111\/rssb.12050"},{"key":"e_1_2_11_14_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4612-1554-7"},{"key":"e_1_2_11_15_1","doi-asserted-by":"publisher","DOI":"10.1080\/01621459.1987.10478472"},{"key":"e_1_2_11_16_1","doi-asserted-by":"publisher","DOI":"10.2337\/dc15-0598"},{"key":"e_1_2_11_17_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4757-2545-2"},{"key":"e_1_2_11_18_1","volume-title":"Asymptotic statistics","author":"Van der Vaart A. W.","year":"2000"},{"key":"e_1_2_11_19_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10107-004-0559-y"}],"container-title":["Statistical Analysis and Data Mining: The ASA Data Science Journal"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/sam.11563","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/full-xml\/10.1002\/sam.11563","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/am-pdf\/10.1002\/sam.11563","content-type":"application\/pdf","content-version":"am","intended-application":"syndication"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/sam.11563","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,25]],"date-time":"2023-08-25T19:36:03Z","timestamp":1692992163000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1002\/sam.11563"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,11,22]]},"references-count":18,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2022,6]]}},"alternative-id":["10.1002\/sam.11563"],"URL":"https:\/\/doi.org\/10.1002\/sam.11563","archive":["Portico"],"relation":{},"ISSN":["1932-1864","1932-1872"],"issn-type":[{"value":"1932-1864","type":"print"},{"value":"1932-1872","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,11,22]]},"assertion":[{"value":"2021-08-04","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2021-11-07","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2021-11-22","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}