{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T05:34:38Z","timestamp":1740116078942,"version":"3.37.3"},"reference-count":49,"publisher":"Wiley","issue":"3","license":[{"start":{"date-parts":[[2010,5,12]],"date-time":"2010-05-12T00:00:00Z","timestamp":1273622400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Statistical Analysis"],"published-print":{"date-parts":[[2010,6]]},"abstract":"Abstract<\/jats:title>Data streams arise in several domains. For instance, in computational finance, several statistical applications revolve around the real\u2010time discovery of associations between a very large number of co\u2010evolving data feeds representing asset prices. The problem we tackle in this paper consists of learning a linear regression function from multivariate input and output streaming data in an incremental fashion while also performing dimensionality reduction and variable selection. When input and output streams are high\u2010dimensional and correlated, it is plausible to assume the existence of hidden factors that explain a large proportion of the covariance between them. The methods we propose build on recursive partial least squares (PLS) regression. The hidden factors are dynamically inferred and tracked over time and, within each factor, the most important streams are recursively identified by means of sparse matrix decompositions. Moreover, the recursive regression model is able to adapt to sudden changes in the data generating mechanism and also identifies the number of latent factors. Extensive simulation results illustrate how the methods perform and compare with alternative penalized regression models for streaming data. We also apply the algorithm to solve a multivariate version of theenhanced index tracking<\/jats:italic>problem in computational finance. Copyright \u00a9 2010 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 3: 170\u2010193, 2010<\/jats:p>","DOI":"10.1002\/sam.10074","type":"journal-article","created":{"date-parts":[[2010,5,12]],"date-time":"2010-05-12T21:30:12Z","timestamp":1273699812000},"page":"170-193","source":"Crossref","is-referenced-by-count":8,"title":["Sparse partial least squares regression for on\u2010line variable selection with multivariate data streams"],"prefix":"10.1002","volume":"3","author":[{"given":"Brian","family":"McWilliams","sequence":"first","affiliation":[]},{"given":"Giovanni","family":"Montana","sequence":"additional","affiliation":[]}],"member":"311","published-online":{"date-parts":[[2010,5,12]]},"reference":[{"key":"e_1_2_8_2_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.comnet.2005.10.021"},{"key":"e_1_2_8_3_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.artmed.2005.07.003"},{"key":"e_1_2_8_4_2","doi-asserted-by":"crossref","unstructured":"Y.ZhuandD.Shasha Statstream: statistical monitoring of thousands of data streams in real time In Proceedings of the 28th VLDB Conference Hong Kong China 2002.","DOI":"10.1016\/B978-155860869-6\/50039-1"},{"issue":"1","key":"e_1_2_8_5_2","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1111\/j.2517-6161.1996.tb02080.x","article-title":"Regression shrinkage and selection via the lasso","volume":"58","year":"1996","journal-title":"J Roy Stat Soc B"},{"key":"e_1_2_8_6_2","doi-asserted-by":"publisher","DOI":"10.1214\/009053604000000067"},{"key":"e_1_2_8_7_2","doi-asserted-by":"publisher","DOI":"10.1214\/07-AOAS131"},{"key":"e_1_2_8_8_2","doi-asserted-by":"publisher","DOI":"10.1287\/mnsc.1080.0986"},{"key":"e_1_2_8_9_2","doi-asserted-by":"crossref","unstructured":"J.Brodie I.Daubechies C.De Mol C.Giannone andI.Loris Sparse and stable Markowitz portfolios. European Central Bank Working Paper Series 936 2008.","DOI":"10.2139\/ssrn.1258442"},{"key":"e_1_2_8_10_2","doi-asserted-by":"crossref","unstructured":"H.Wang W.Fan P. S.Yu andJ.Han Mining concept\u2010drifting data streams using ensemble classifiers In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining Washington DC 2003 226\u2013235.","DOI":"10.1145\/956750.956778"},{"volume-title":"Linear Factor Models in Finance","year":"2004","author":"Knight J","key":"e_1_2_8_11_2"},{"key":"e_1_2_8_12_2","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2003.1217609"},{"key":"e_1_2_8_13_2","unstructured":"S.Papadimitriou J.Sun andC.Faloutsos Streaming pattern discovery in multiple time\u2010series In Proceedings of the 31st International Conference on Very Large Data Bases Trondheim Norway 2005 697\u2013708."},{"key":"e_1_2_8_14_2","doi-asserted-by":"publisher","DOI":"10.1109\/78.365290"},{"key":"e_1_2_8_15_2","doi-asserted-by":"publisher","DOI":"10.1023\/A:1009646500088"},{"key":"e_1_2_8_16_2","doi-asserted-by":"publisher","DOI":"10.1016\/S0167-8655(02)00381-1"},{"key":"e_1_2_8_17_2","doi-asserted-by":"publisher","DOI":"10.1002\/(SICI)1099-128X(199701)11:1<73::AID-CEM435>3.0.CO;2-#"},{"key":"e_1_2_8_18_2","doi-asserted-by":"publisher","DOI":"10.1162\/089976605774320557"},{"volume-title":"Adaptive Filter Theory","year":"2001","author":"Haykin S","key":"e_1_2_8_19_2"},{"key":"e_1_2_8_20_2","unstructured":"S.\u2010P.Kim Y. N.Rao D.Erdogmus andJ. C.Principe Tracking of multivariate time\u2010variant systems based on on\u2010line variable selection In 2004 IEEE Workshop on Machine Learning for Signal Processing Sao Luis Brazil 2004 123\u2013132."},{"key":"e_1_2_8_21_2","unstructured":"C.Anagnostopoulos D.Tasoulis D. J.Hand andN. M.Adams Online optimisation for variable selection on data streams Proceedings of the 18th European Conference on Artificial Intelligence Patros Greece 2008 132\u2013136."},{"key":"e_1_2_8_22_2","doi-asserted-by":"publisher","DOI":"10.1016\/0165-1684(94)90164-3"},{"key":"e_1_2_8_23_2","doi-asserted-by":"publisher","DOI":"10.1007\/978-0-387-78189-1_5"},{"key":"e_1_2_8_24_2","doi-asserted-by":"publisher","DOI":"10.1007\/11752790_2"},{"key":"e_1_2_8_25_2","doi-asserted-by":"publisher","DOI":"10.1002\/cem.1180020306"},{"volume-title":"Multivariate Analysis","year":"1966","author":"Wold H","key":"e_1_2_8_26_2"},{"key":"e_1_2_8_27_2","unstructured":"J.Wegelin A survey of partial least squares (PLS) methods with emphasis on the two\u2010block case Technical report University of Washington 2000."},{"key":"e_1_2_8_28_2","doi-asserted-by":"publisher","DOI":"10.1002\/cem.862"},{"key":"e_1_2_8_29_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.jmva.2007.06.007"},{"key":"e_1_2_8_30_2","doi-asserted-by":"publisher","DOI":"10.1093\/biostatistics\/kxp008"},{"key":"e_1_2_8_31_2","doi-asserted-by":"crossref","unstructured":"K.L\u00ea Cao D.Rossouw C.Robert\u2010Grani\u00e9 andP.Besse Sparse PLS: variable selection when integrating omic data Technical report INRA 2008.","DOI":"10.2202\/1544-6115.1390"},{"volume-title":"Matrix Computations","year":"1996","author":"Golub G","key":"e_1_2_8_32_2"},{"key":"e_1_2_8_33_2","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4612-1768-8_11"},{"key":"e_1_2_8_34_2","doi-asserted-by":"publisher","DOI":"10.1109\/LSP.2008.2001559"},{"key":"e_1_2_8_35_2","doi-asserted-by":"publisher","DOI":"10.1214\/aoms\/1177729893"},{"key":"e_1_2_8_36_2","doi-asserted-by":"publisher","DOI":"10.1109\/TSP.2005.851110"},{"volume-title":"Detection of abrupt changes: theory and application","year":"1993","author":"Basseville M","key":"e_1_2_8_37_2"},{"key":"e_1_2_8_38_2","doi-asserted-by":"publisher","DOI":"10.1198\/016214505000000628"},{"key":"e_1_2_8_39_2","doi-asserted-by":"publisher","DOI":"10.1080\/17446540500102455"},{"key":"e_1_2_8_40_2","doi-asserted-by":"publisher","DOI":"10.1016\/S0377-2217(02)00425-3"},{"key":"e_1_2_8_41_2","doi-asserted-by":"crossref","unstructured":"M.GilliandE.K\u00ebllezi Threshold accepting for index tracking Technical report Department of Econometrics University of Geneva Switzerland 2001.","DOI":"10.1007\/978-1-4757-5226-7_1"},{"key":"e_1_2_8_42_2","doi-asserted-by":"crossref","unstructured":"C.AlexanderandA.Dimitriu Sources of over\u2010performance in equity markets: mean reversion common trends and herding Technical report ISMA Center University of Reading UK 2005.","DOI":"10.2139\/ssrn.493823"},{"key":"e_1_2_8_43_2","doi-asserted-by":"publisher","DOI":"10.1088\/1469-7688\/4\/3\/F01"},{"key":"e_1_2_8_44_2","doi-asserted-by":"publisher","DOI":"10.2307\/3665314"},{"key":"e_1_2_8_45_2","doi-asserted-by":"publisher","DOI":"10.3905\/jpm.1990.409288"},{"key":"e_1_2_8_46_2","doi-asserted-by":"crossref","unstructured":"C.AlexanderandA.Dimitriu The cointegration alpha: enhanced index tracking and long\u2010short equity market neutral strategies. Social Science Research Network Working Paper Series June2002.","DOI":"10.2139\/ssrn.315619"},{"key":"e_1_2_8_47_2","doi-asserted-by":"crossref","unstructured":"M.Brand Fast online svd revisions for lightweight recommender systems Technical report Mitsubishi Electric Research Laboratory 2003.","DOI":"10.1137\/1.9781611972733.4"},{"key":"e_1_2_8_48_2","doi-asserted-by":"publisher","DOI":"10.1049\/iet-rsn:20080045"},{"key":"e_1_2_8_49_2","doi-asserted-by":"publisher","DOI":"10.1155\/2009\/576972"},{"key":"e_1_2_8_50_2","doi-asserted-by":"publisher","DOI":"10.1186\/1753-6561-1-s1-s122"}],"container-title":["Statistical Analysis and Data Mining: The ASA Data Science Journal"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.wiley.com\/onlinelibrary\/tdm\/v1\/articles\/10.1002%2Fsam.10074","content-type":"unspecified","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.wiley.com\/onlinelibrary\/tdm\/v1\/articles\/10.1002%2Fsam.10074","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/sam.10074","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,2,20]],"date-time":"2025-02-20T20:52:17Z","timestamp":1740084737000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1002\/sam.10074"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2010,5,12]]},"references-count":49,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2010,6]]}},"alternative-id":["10.1002\/sam.10074"],"URL":"https:\/\/doi.org\/10.1002\/sam.10074","archive":["Portico"],"relation":{},"ISSN":["1932-1864","1932-1872"],"issn-type":[{"type":"print","value":"1932-1864"},{"type":"electronic","value":"1932-1872"}],"subject":[],"published":{"date-parts":[[2010,5,12]]}}}