{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,1,25]],"date-time":"2024-01-25T12:27:22Z","timestamp":1706185642129},"reference-count":25,"publisher":"Wiley","issue":"2","license":[{"start":{"date-parts":[[2022,7,20]],"date-time":"2022-07-20T00:00:00Z","timestamp":1658275200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"}],"funder":[{"DOI":"10.13039\/100003187","name":"National Sleep Foundation","doi-asserted-by":"publisher","award":["DMS\u20101855484"],"id":[{"id":"10.13039\/100003187","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["Random Struct Algorithms"],"published-print":{"date-parts":[[2023,3]]},"abstract":"Height functions of growing random surfaces are often conjectured to be superconcentrated, meaning that their variances grow sublinearly in time. This article introduces a new concept\u2014called subroughness<\/jats:italic>\u2014meaning that there exist two distinct points such that the expected squared difference between the heights at these points grows sublinearly in time. The main result of the paper is that superconcentration is equivalent to subroughness in a class of growing random surfaces. The result is applied to establish superconcentration in a variant of the restricted solid\u2010on\u2010solid (RSOS) model and in a variant of the ballistic deposition model, and give new proofs of superconcentration in directed last\u2010passage percolation and directed polymers.<\/jats:p>","DOI":"10.1002\/rsa.21108","type":"journal-article","created":{"date-parts":[[2022,7,20]],"date-time":"2022-07-20T07:57:36Z","timestamp":1658303856000},"page":"304-334","update-policy":"http:\/\/dx.doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Superconcentration in surface growth"],"prefix":"10.1002","volume":"62","author":[{"given":"Sourav","family":"Chatterjee","sequence":"first","affiliation":[{"name":"Departments of Mathematics and Statistics Stanford University Stanford California USA"}]}],"member":"311","published-online":{"date-parts":[[2022,7,20]]},"reference":[{"key":"e_1_2_13_2_1","doi-asserted-by":"publisher","DOI":"10.1214\/EJP.v18-2005"},{"key":"e_1_2_13_3_1","doi-asserted-by":"publisher","DOI":"10.1007\/BF01014383"},{"key":"e_1_2_13_4_1","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9780511599798"},{"key":"e_1_2_13_5_1","doi-asserted-by":"publisher","DOI":"10.3233\/ASY-1991-4305"},{"key":"e_1_2_13_6_1","doi-asserted-by":"publisher","DOI":"10.1214\/aop\/1068646373"},{"key":"e_1_2_13_7_1","unstructured":"S.Chatterjee Chaos concentration and multiple valleys. arXiv preprint arXiv:0810.4221 2008."},{"key":"e_1_2_13_8_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-03886-5"},{"key":"e_1_2_13_9_1","unstructured":"S.Chatterjee.Universality of deterministic KPZ. arXiv preprint arXiv:2102.13131 2021."},{"key":"e_1_2_13_10_1","unstructured":"S.ChatterjeeandP. E.Souganidis Convergence of deterministic growth models. arXiv preprint arXiv:2108.00538 2021."},{"key":"e_1_2_13_11_1","series-title":"Lecture notes from the 46th Probability Summer School held in Saint\u2010Flour","volume-title":"Directed polymers in random environments","author":"Comets F.","year":"2016"},{"issue":"3","key":"e_1_2_13_12_1","first-page":"230","article-title":"Kardar\u2013Parisi\u2013Zhang universality","volume":"63","author":"Corwin I.","year":"2016","journal-title":"Not. AMS"},{"key":"e_1_2_13_13_1","doi-asserted-by":"publisher","DOI":"10.1142\/1452"},{"key":"e_1_2_13_14_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10959-010-0315-6"},{"key":"e_1_2_13_15_1","doi-asserted-by":"publisher","DOI":"10.1007\/s002200050027"},{"key":"e_1_2_13_16_1","doi-asserted-by":"crossref","unstructured":"J.Kahn G.Kalai andN.Linial The influence of variables on Boolean functions Proc. 29th Sympos. Found. Comput. Sci. White Plains: IEEE 1988 pp.68\u201380.","DOI":"10.1109\/SFCS.1988.21923"},{"key":"e_1_2_13_17_1","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevE.84.061150"},{"key":"e_1_2_13_18_1","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevLett.62.2289"},{"key":"e_1_2_13_19_1","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevE.92.010101"},{"key":"e_1_2_13_20_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10955-008-9507-1"},{"key":"e_1_2_13_21_1","doi-asserted-by":"publisher","DOI":"10.1214\/aoap\/1015961164"},{"key":"e_1_2_13_22_1","doi-asserted-by":"publisher","DOI":"10.4310\/CDM.2011.v2011.n1.a3"},{"key":"e_1_2_13_23_1","doi-asserted-by":"publisher","DOI":"10.1016\/S0246-0203(00)00137-0"},{"key":"e_1_2_13_24_1","doi-asserted-by":"publisher","DOI":"10.1214\/aop\/1176988612"},{"key":"e_1_2_13_25_1","doi-asserted-by":"crossref","unstructured":"F.Toninelli (2+1) dimensional interface dynamics: Mixing time hydrodynamic limit and anisotropic KPZ growth Proc. Int. Congr. Math.\u2013Rio de Janeiro 2018. Vol. III. Invited Lect. World Sci. Publ. Hackensack NJ 2018 pp.2733\u20132758.","DOI":"10.1142\/9789813272880_0158"},{"key":"e_1_2_13_26_1","doi-asserted-by":"publisher","DOI":"10.1016\/0095-8522(59)90041-8"}],"container-title":["Random Structures & Algorithms"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/rsa.21108","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/full-xml\/10.1002\/rsa.21108","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/rsa.21108","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,21]],"date-time":"2023-08-21T02:34:36Z","timestamp":1692585276000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1002\/rsa.21108"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,7,20]]},"references-count":25,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2023,3]]}},"alternative-id":["10.1002\/rsa.21108"],"URL":"https:\/\/doi.org\/10.1002\/rsa.21108","archive":["Portico"],"relation":{},"ISSN":["1042-9832","1098-2418"],"issn-type":[{"value":"1042-9832","type":"print"},{"value":"1098-2418","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,7,20]]},"assertion":[{"value":"2021-09-14","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2022-05-07","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2022-07-20","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}