{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T05:56:40Z","timestamp":1726034200660},"reference-count":45,"publisher":"Wiley","issue":"7","license":[{"start":{"date-parts":[[2020,8,25]],"date-time":"2020-08-25T00:00:00Z","timestamp":1598313600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"}],"content-domain":{"domain":["onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["Journal of Field Robotics"],"published-print":{"date-parts":[[2020,10]]},"abstract":"Abstract<\/jats:title>Rovers operating on Mars require more and more autonomous features to fulfill their challenging mission requirements. However, the inherent constraints of space systems render the implementation of complex algorithms an expensive and difficult task. In this paper, we propose an architecture for autonomous navigation. Efficient implementations of autonomous features are built on top of the ExoMars path following<\/jats:italic> navigation approach to enhance the safety and traversing capabilities of the rover. These features allow the rover to detect and avoid hazards and perform significantly longer traverses planned by operators on the ground. The efficient navigation approach has been implemented and tested during field test campaigns on a planetary analogue terrain. The experiments evaluated the proposed architecture by autonomously completing several traverses of variable lengths while avoiding hazards. The approach relies only on the optical Localization Cameras stereo bench, a sensor that is found in all current rovers, and potentially allows for computationally inexpensive long\u2010range autonomous navigation in terrains of medium difficulty.<\/jats:p>","DOI":"10.1002\/rob.21981","type":"journal-article","created":{"date-parts":[[2020,8,26]],"date-time":"2020-08-26T09:19:07Z","timestamp":1598433547000},"page":"1153-1170","update-policy":"http:\/\/dx.doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":17,"title":["Efficient autonomous navigation for planetary rovers with limited resources"],"prefix":"10.1002","volume":"37","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-7648-8928","authenticated-orcid":false,"given":"Levin","family":"Gerdes","sequence":"first","affiliation":[{"name":"Automation and Robotics Section European Space Agency Noordwijk The Netherlands"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3284-5422","authenticated-orcid":false,"given":"Martin","family":"Azkarate","sequence":"additional","affiliation":[{"name":"Automation and Robotics Section European Space Agency Noordwijk The Netherlands"},{"name":"Systems Engineering and Automation Department Universidad de M\u00e1laga M\u00e1laga Spain"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5130-3808","authenticated-orcid":false,"given":"Jos\u00e9 Ricardo","family":"S\u00e1nchez\u2010Ib\u00e1\u00f1ez","sequence":"additional","affiliation":[{"name":"Systems Engineering and Automation Department Universidad de M\u00e1laga M\u00e1laga Spain"}]},{"given":"Luc","family":"Joudrier","sequence":"additional","affiliation":[{"name":"Automation and Robotics Section European Space Agency Noordwijk The Netherlands"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5819-8310","authenticated-orcid":false,"given":"Carlos Jes\u00fas","family":"Perez\u2010del\u2010Pulgar","sequence":"additional","affiliation":[{"name":"Systems Engineering and Automation Department Universidad de M\u00e1laga M\u00e1laga Spain"}]}],"member":"311","published-online":{"date-parts":[[2020,8,25]]},"reference":[{"key":"e_1_2_5_2_1","doi-asserted-by":"crossref","unstructured":"Andrakhanov A. &Stuchkov A.(2017). Traversability estimation system for mobile robot in heterogeneous environment with different underlying surface characteristics. In\u00a012th International Scientific and Technical Conference on Computer Science and Information Technologies\u00a0(CSIT 2017). Lviv Ukraine: IEEE.","DOI":"10.1109\/STC-CSIT.2017.8098847"},{"key":"e_1_2_5_3_1","unstructured":"Avil\u00e9s M. Lourakis M. Lentaris G. Maragos K. Zabulis X. Mora D. &Soudris D.(2018). SPARTAN: Vision\u2010based autonomous navigation system for fast traversal planetary rovers. In14th International Symposium on Artificial Intelligence Robotics and Automation in Space(iSAIRAS 2018)."},{"key":"e_1_2_5_4_1","unstructured":"Bora L. Nye B. Lancaster R. Barclay C. &Winter M.(2017). ExoMars rover control localisation and path planning in an hazardous and high disturbance environment. In14th Symposium on Advanced Space Technologies in Robotics and Automation(ASTRA)."},{"key":"e_1_2_5_5_1","unstructured":"Boukas E. Hewitt R. A. Pagnamenta M. Nelen R. Azkarate M. Marshall J. A. \u2026Visentin G.(2016). HDPR: A mobile testbed for current and future rover technologies. In13th International Symposium on Artificial Intelligence Robotics and Automation in Space(iSAIRAS 2016) (pp. 1\u20106).https:\/\/qspace.library.queensu.ca\/handle\/1974\/15004"},{"key":"e_1_2_5_6_1","unstructured":"Bousquet P.(2011). The CNES contribution to in\u2010situ exploration: Robotic implications. In\u00a011th Symposium on Advanced Space Technologies in Robotics and Automation(ASTRA)."},{"key":"e_1_2_5_7_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-03991-1"},{"key":"e_1_2_5_8_1","unstructured":"Cheng Y. Maimone M. &Matthies L.(2005). Visual odometry on the Mars exploration rovers. InIEEE International Conference on Systems Man and Cybernetics. Waikoloa HI: IEEE."},{"key":"e_1_2_5_9_1","doi-asserted-by":"crossref","unstructured":"Churchill W. &Newman P.(2012). Practice makes perfect? Managing and leveraging visual experiences for lifelong navigation. InIEEE International Conference on Robotics and Automation(ICRA). Saint Paul MN: IEEE.","DOI":"10.1109\/ICRA.2012.6224596"},{"key":"e_1_2_5_10_1","unstructured":"Correal R. &Pajares G.(2011). Onboard autonomous navigation architecture for a planetary surface exploration rover and functional validation using open source tools. In11th Symposium on Advanced Space Technologies in Robotics and Automation(ASTRA)."},{"key":"e_1_2_5_11_1","unstructured":"Coulter R. C.(1992).Implementation of the pure pursuit path tracking algorithm. Technical report Carnegie Mellon University Robotics Institute. Retrieved fromhttps:\/\/www.ri.cmu.edu\/pub_files\/pub3\/coulter_r_craig_1992_1\/coulter_r_craig_1992_1.pdf"},{"key":"e_1_2_5_12_1","unstructured":"Filip J. Azkarate M. &Visentin G.(2017). Trajectory control for autonomous planetary rovers. In14th Symposium on Advanced Space Technologies in Robotics and Automation(ASTRA)."},{"key":"e_1_2_5_13_1","unstructured":"FLIR Bumblebee 2. (2018). Retrieved fromhttps:\/\/www.ptgrey.com\/bumblebee2\u2010stereo\u2010vision\u201008\u2010mp\u2010color\u2010firewire\u20101394a\u201025mm\u2010sony\u2010icx204\u2010camera"},{"key":"e_1_2_5_14_1","unstructured":"FLIR Grasshopper 2. (2018). Retrieved fromhttps:\/\/www.ptgrey.com\/grasshopper2\u201014\u2010mp\u2010color\u2010firewire\u20101394b\u2010sony\u2010icx285\u2010camera"},{"key":"e_1_2_5_15_1","doi-asserted-by":"publisher","DOI":"10.1163\/156855306778792470"},{"key":"e_1_2_5_16_1","doi-asserted-by":"publisher","DOI":"10.1177\/0278364917737153"},{"key":"e_1_2_5_17_1","unstructured":"Joudrier L. Kapellos K. &Wormnes K.(2013). 3D based rover operations control system. In12th Symposium on Advanced Space Technologies in Robotics and Automation(ASTRA)."},{"key":"e_1_2_5_18_1","unstructured":"Kindlmann G.(2018). Image mosaicing\u2013background and principles. Retrieved from\u00a0http:\/\/www.cs.utah.edu\/~gk\/class\/6964\/1\/tech.html"},{"key":"e_1_2_5_19_1","doi-asserted-by":"publisher","DOI":"10.5772\/62099"},{"key":"e_1_2_5_20_1","doi-asserted-by":"crossref","unstructured":"Kostavelis I. Boukas E. Nalpantidis L. Gasteratos A. &AvilesRodrigalvarez M.(2011). SPARTAN system: Towards a low\u2010cost and high\u2010performance vision architecture for space exploratory rovers. In\u00a0IEEE International Conference on Computer Vision Workshops(ICCV Workshops). Barcelona Spain: IEEE.","DOI":"10.1109\/ICCVW.2011.6130493"},{"key":"e_1_2_5_21_1","doi-asserted-by":"publisher","DOI":"10.1002\/rob.21484"},{"key":"e_1_2_5_22_1","doi-asserted-by":"publisher","DOI":"10.1145\/3312743"},{"key":"e_1_2_5_23_1","unstructured":"Maimone M.(2017). The evolution of autonomous capabilities on NASA's Mars rovers.Southern California Robotics Symposium.Retrieved fromhttps:\/\/www.youtube.com\/watch?v=u4\u20104x8GhE6Y"},{"key":"e_1_2_5_24_1","doi-asserted-by":"publisher","DOI":"10.1002\/rob.20184"},{"key":"e_1_2_5_25_1","unstructured":"Mandelbaum R. McDowell L. Bogoni L. Reich B. &Hansen M.(1998). Real\u2010time stereo processing obstacle detection and terrain estimation from vehicle\u2010mounted stereo cameras. InProceedings Fourth IEEE Workshop on Applications of Computer Vision. WACV\u201998(Cat. No.98EX201)\u00a0(pp. 288\u2013289). Princeton NJ: IEEE."},{"key":"e_1_2_5_26_1","unstructured":"Marc R. &Weclewski P.(2019). Capabilities of long range autonomous multi\u2010mode rover navigation system\u2010ergo field trials and planned evolution. In15th Symposium on Advanced Space Technologies in Robotics and Automation(ASTRA)."},{"key":"e_1_2_5_27_1","unstructured":"Marc R. Weclewski P. &Lachat D.(2018). Autonomous multi\u2010mode rover navigation for long\u2010range planetary exploration using orbital and locally perceived data. In69th International Astronautical Congress (IAC) Bremen Germany October 1\u20135 2018. (IAC)."},{"key":"e_1_2_5_28_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-007-0046-z"},{"key":"e_1_2_5_29_1","unstructured":"McManamon K. Lancaster R. &Silva N.(2013). ExoMars rover vehicle perception system architecture and test results. In12th Symposium on Advanced Space Technologies in Robotics and Automation(ASTRA)."},{"key":"e_1_2_5_30_1","unstructured":"Merlo A. Larranaga J. &Falkner P.(2013). Sample fetching rover (SFR) for MSR. In12th Symposium on Advanced Space Technologies in Robotics and Automation(ASTRA)."},{"key":"e_1_2_5_31_1","unstructured":"Moreno S.(2013). CNES robotics activities: Towards long distance OB decision\u2010making navigation. In\u00a012th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA)."},{"key":"e_1_2_5_32_1","doi-asserted-by":"publisher","DOI":"10.1002\/rob.20251"},{"key":"e_1_2_5_33_1","doi-asserted-by":"crossref","unstructured":"P\u00e9rez\u2010delPulgar C. J. S\u00e1nchez J. S\u00e1nchez A. Azkarate M. &Visentin G.(2017). Path planning for reconfigurable rovers in planetary exploration. In2017 IEEE International Conference on\u00a0Advanced Intelligent Mechatronics (AIM) (pp. 1453\u20131458). Munich Germany: IEEE.","DOI":"10.1109\/AIM.2017.8014223"},{"key":"e_1_2_5_34_1","unstructured":"PRL(2018). Planetary robotics lab. Retrieved from\u00a0https:\/\/www.esa.int\/Our_Activities\/Space_Engineering_Technology\/Automation_and_Robotics\/About_the_Planetary_Robotics_Lab"},{"key":"e_1_2_5_35_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.engappai.2019.08.011"},{"key":"e_1_2_5_36_1","unstructured":"Shaw A. Woods M. Churchill W. &Newman P.(2013). Robust visual odometry for space exploration. In12th Symposium on Advanced Space Technologies in Robotics and Automation(ASTRA)."},{"key":"e_1_2_5_37_1","unstructured":"Snider J. M.(2009).Automatic steering methods for autonomous automobile path tracking. Technical report Carnegie Mellon University Robotics Institute."},{"key":"e_1_2_5_38_1","unstructured":"Townson D. Woods M. &Carnochan S.(2018). ExoMars VisLoc\u2014The industrialised visual localisation system for the ExoMars rover. In12th Symposium on Advanced Space Technologies in Robotics and Automation(iSAIRAS 2018)."},{"key":"e_1_2_5_39_1","doi-asserted-by":"publisher","DOI":"10.1002\/rob.20126"},{"key":"e_1_2_5_40_1","doi-asserted-by":"publisher","DOI":"10.1089\/ast.2016.1533"},{"key":"e_1_2_5_41_1","unstructured":"Williamson T. &Thorpe C.(1998). A specialized multibaseline stereo technique for obstacle detection. InProceedings of 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(Cat. No.98CB36231)\u00a0(pp. 238\u2013244). Santa Barbara CA: IEEE."},{"key":"e_1_2_5_42_1","unstructured":"Wilson M.(2013). Mars 2020 mission concept. Retrieved from\u00a0https:\/\/www.nasa.gov\/sites\/default\/files\/files\/3_Mars_2020_Mission_Concept.pdf"},{"key":"e_1_2_5_43_1","unstructured":"Winter M. Rubio S. Lancaster R. Barclay C. Silva N. Nye B. &Bora L.(2015). ExoMars rover gnc system design: a detailed description. In13th Symposium on Advanced Space Technologies in Robotics and Automation(ASTRA)."},{"key":"e_1_2_5_44_1","unstructured":"Winter M. Rubio S. Lancaster R. Barclay C. Silva N. Nye B. &Bora L.(2017). Detailed description of the high\u2010level autonomy functionalities developed for the ExoMars rover. In14th Symposium on Advanced Space Technologies in Robotics and Automation(ASTRA)."},{"key":"e_1_2_5_45_1","doi-asserted-by":"publisher","DOI":"10.1002\/rob.21528"},{"key":"e_1_2_5_46_1","unstructured":"Yeomans B. Gadd M. Barnes D. Porav H. Dequaire J. Wilcox T. &Newman P.(2017). Murfi 2016\u2013from cars to Mars: Applying autonomous vehicle navigation methods to a space rover mission. In14th Symposium on Advanced Space Technologies in Robotics and Automation(ASTRA)."}],"container-title":["Journal of Field Robotics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/rob.21981","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/full-xml\/10.1002\/rob.21981","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/rob.21981","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,5]],"date-time":"2023-09-05T16:25:04Z","timestamp":1693931104000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1002\/rob.21981"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,8,25]]},"references-count":45,"journal-issue":{"issue":"7","published-print":{"date-parts":[[2020,10]]}},"alternative-id":["10.1002\/rob.21981"],"URL":"https:\/\/doi.org\/10.1002\/rob.21981","archive":["Portico"],"relation":{},"ISSN":["1556-4959","1556-4967"],"issn-type":[{"value":"1556-4959","type":"print"},{"value":"1556-4967","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,8,25]]},"assertion":[{"value":"2018-09-13","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2020-07-15","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2020-08-25","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}