{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T13:24:22Z","timestamp":1740144262531,"version":"3.37.3"},"reference-count":31,"publisher":"Wiley","issue":"7","license":[{"start":{"date-parts":[[2018,9,9]],"date-time":"2018-09-09T00:00:00Z","timestamp":1536451200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"}],"content-domain":{"domain":["onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["Journal of Field Robotics"],"published-print":{"date-parts":[[2018,10]]},"abstract":"Abstract<\/jats:title>Registration, also know as extrinsic calibration, is the process of determining the position and orientation of a sensor relative to a known frame of reference. For ranging sensors such as light detection and ranging (LiDAR) used in field robotic applications, the quality of the registration determines the utility of the range measurements. This paper makes two contributions. The first is the introduction of a new method, termed maximum sum of evidence (MSoE) for registering three\u2010dimensional LiDAR sensors to moving platforms. This method is shown to produce more accurate registration solutions than two leading methods for these sensors, the adaptive structure registration filter (ASRF) and R\u00e9nyi quadratic entropy (RQE). The second contribution of the paper is to study the accuracy of the MSoE registration against these two other approaches. One of these, like the MSoE, requires a truth model of the environment. The other, a model\u2010free method, seeks the registration that minimizes the RQE of a compound point cloud. The main finding of this investigation is that while the model\u2010based methods prove more accurate than the model\u2010free approach, the results of all three methods are fit for their intended field robotic applications. This leads us to conclude that registration based on RQE is preferable in many, if not all, field robotic applications for reasons of convenience, since a truth model of the environment is not required.<\/jats:p>","DOI":"10.1002\/rob.21811","type":"journal-article","created":{"date-parts":[[2018,9,9]],"date-time":"2018-09-09T15:15:16Z","timestamp":1536506116000},"page":"1182-1200","update-policy":"https:\/\/doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":11,"title":["Registration of three\u2010dimensional scanning LiDAR sensors: An evaluation of model\u2010based and model\u2010free methods"],"prefix":"10.1002","volume":"35","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-4183-9166","authenticated-orcid":false,"given":"Timothy Andrew","family":"D\u2019Adamo","sequence":"first","affiliation":[{"name":"School of Mechanical and Mining Engineering The University of Queensland St. Lucia Queensland Australia"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-8729-0693","authenticated-orcid":false,"given":"Tyson Govan","family":"Phillips","sequence":"additional","affiliation":[{"name":"School of Mechanical and Mining Engineering The University of Queensland St. Lucia Queensland Australia"}]},{"given":"Peter Ross","family":"McAree","sequence":"additional","affiliation":[{"name":"School of Mechanical and Mining Engineering The University of Queensland St. Lucia Queensland Australia"}]}],"member":"311","published-online":{"date-parts":[[2018,9,9]]},"reference":[{"key":"e_1_2_9_1_2_1","unstructured":"Applanix Corp. (2008).POS LV 420 V4. Data sheet Applanix Corp."},{"key":"e_1_2_9_1_3_1","doi-asserted-by":"publisher","DOI":"10.1109\/34.121791"},{"key":"e_1_2_9_1_4_1","unstructured":"Chan T. O. &Lichti D. D.(2013).Feature\u2010based self\u2010calibration of Velodyne HDL\u201032E LiDAR for terrestrial mobile mapping applications.The 8th International Symposium on Mobile Mapping Technology.Tainan Taiwan 1\u20103."},{"key":"e_1_2_9_1_5_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.isprsjprs.2014.11.003"},{"key":"e_1_2_9_1_6_1","doi-asserted-by":"publisher","DOI":"10.1177\/02783649922066213"},{"key":"e_1_2_9_1_7_1","unstructured":"Duff E.(2006).Accurate guidance and measurement for excavators using a laser scanner.Technical Report Australian Coal Association Research Program (ACARP): Final Report \u2010 Project C14043."},{"key":"e_1_2_9_1_8_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-00065-7_60"},{"key":"e_1_2_9_1_9_1","unstructured":"FARO Technologies Inc. (2010).FARO Laser Scanner Focus."},{"key":"e_1_2_9_1_10_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-13408-1_2"},{"key":"e_1_2_9_1_11_1","doi-asserted-by":"crossref","unstructured":"Gao C. & Spletzer J. R. (2010). On\u2010line calibration of multiple lidars on a mobile vehicle platform. In Robotics and Automation (ICRA) 2010 IEEE International Conference on. IEEE 279\u2013284.","DOI":"10.1109\/ROBOT.2010.5509880"},{"key":"e_1_2_9_1_12_1","unstructured":"KUKA Roboter GmbH(2016).Spez KR 1000 titan PA KR C4. Zugspitzstrae 140 D\u201086165 Augsburg Germany."},{"key":"e_1_2_9_1_13_1","doi-asserted-by":"publisher","DOI":"10.1111\/j.1477-9730.2011.00632.x"},{"key":"e_1_2_9_1_14_1","doi-asserted-by":"crossref","unstructured":"Kwak K. Huber D. F. Badino H. &Kanade T.(2011).Extrinsic calibration of a single line scanning lidar and a camera. InIntelligent Robots and Systems (IROS) 2011 IEEE\/RSJ International Conference on.3283\u20103289.","DOI":"10.1109\/IROS.2011.6094490"},{"key":"e_1_2_9_1_15_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-28572-1_13"},{"key":"e_1_2_9_1_16_1","doi-asserted-by":"crossref","unstructured":"Maddern W. Harrison A. &Newman P.(2012).Lost in translation (and rotation): Rapid extrinsic calibration for 2D and 3D LiDARs. InProceedings of the IEEE International Conference on Robotics and Automation. IEEE 3096\u20103102.","DOI":"10.1109\/ICRA.2012.6224607"},{"volume-title":"Decentralized estimation and control for multisensor systems","year":"1998","author":"Mutambara A. G.","key":"e_1_2_9_1_17_1"},{"key":"e_1_2_9_1_18_1","doi-asserted-by":"publisher","DOI":"10.1111\/phor.12198"},{"key":"e_1_2_9_1_19_1","unstructured":"Pandey G. McBride J. R. Savarese S. &Eustice R. M.(2012).Automatic Targetless Extrinsic Calibration of a 3D Lidar and Camera by Maximizing Mutual Information.AAAI."},{"key":"e_1_2_9_1_20_1","doi-asserted-by":"publisher","DOI":"10.1002\/rob.21542"},{"key":"e_1_2_9_1_21_1","doi-asserted-by":"publisher","DOI":"10.1002\/rob.21562"},{"key":"e_1_2_9_1_22_1","doi-asserted-by":"crossref","unstructured":"Segal A. Haehnel D. &Thrun S.(2009).Generalized\u2010ICP.Robotics: Science and systems 2 435.","DOI":"10.15607\/RSS.2009.V.021"},{"key":"e_1_2_9_1_23_1","doi-asserted-by":"crossref","unstructured":"Serafin J. &Grisetti G.(2015).NICP: Dense normal based point cloud registration. InIntelligent Robots and Systems (IROS) 2015 IEEE\/RS J International Conference on. IEEE742\u2010749.","DOI":"10.1109\/IROS.2015.7353455"},{"key":"e_1_2_9_1_24_1","doi-asserted-by":"publisher","DOI":"10.1177\/0278364911429475"},{"key":"e_1_2_9_1_25_1","doi-asserted-by":"publisher","DOI":"10.1109\/70.88014"},{"key":"e_1_2_9_1_26_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4899-3324-9"},{"key":"e_1_2_9_1_27_1","doi-asserted-by":"publisher","DOI":"10.1177\/0278364912460895"},{"key":"e_1_2_9_1_28_1","doi-asserted-by":"crossref","unstructured":"Underwood J. Hill A. &Scheding S.(2007).Calibration of range sensor pose on mobile platforms.2007 IEEE\/RSJ International Conference on Intelligent Robots and Systems.3866\u20103871.","DOI":"10.1109\/IROS.2007.4398971"},{"key":"e_1_2_9_1_29_1","unstructured":"Velodyne LiDAR Inc. (2008).HDL\u201064E S2 and S2.1: High definition LiDAR sensor. 345 Digital Drive Morgan Hill CA 95037."},{"key":"e_1_2_9_1_30_1","unstructured":"Velodyne LiDAR Inc. (2016).63\u20109243 Rev B User Manual and Programming Guide VLP\u201016. Digital Drive Morgan Hill CA 95037."},{"key":"e_1_2_9_1_31_1","doi-asserted-by":"publisher","DOI":"10.1109\/70.134271"},{"key":"e_1_2_9_1_32_1","unstructured":"Williams I. Upcroft B. Denman A. Reid A. &McAree R.(2009).Range sensor pose estimation."}],"container-title":["Journal of Field Robotics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.wiley.com\/onlinelibrary\/tdm\/v1\/articles\/10.1002%2Frob.21811","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/rob.21811","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,10]],"date-time":"2024-07-10T03:48:45Z","timestamp":1720583325000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1002\/rob.21811"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,9,9]]},"references-count":31,"journal-issue":{"issue":"7","published-print":{"date-parts":[[2018,10]]}},"alternative-id":["10.1002\/rob.21811"],"URL":"https:\/\/doi.org\/10.1002\/rob.21811","archive":["Portico"],"relation":{},"ISSN":["1556-4959","1556-4967"],"issn-type":[{"type":"print","value":"1556-4959"},{"type":"electronic","value":"1556-4967"}],"subject":[],"published":{"date-parts":[[2018,9,9]]},"assertion":[{"value":"2017-08-06","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2018-07-13","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2018-09-09","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}