{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,22]],"date-time":"2025-03-22T10:31:01Z","timestamp":1742639461617},"reference-count":41,"publisher":"Wiley","issue":"8","license":[{"start":{"date-parts":[[2017,9,27]],"date-time":"2017-09-27T00:00:00Z","timestamp":1506470400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Quality & Reliability Eng"],"published-print":{"date-parts":[[2017,12]]},"abstract":"Abstract<\/jats:title>Time\u2010between\u2010events control charts are commonly used to monitor high\u2010quality processes and have several advantages over the ordinary control charts. In this article, we present some new control charts based on the renewal process, where a class of absolutely continuous exponentiated distributions is assumed for the time between events. This class includes the generalized exponential, generalized Rayleigh, and exponentiated Pareto distributions. Although we discuss the design structure for all the mentioned distributions, our main focus will be on the generalized exponential distribution due to its practical relevance and popularity. Since the generalized exponential distribution is a generalization of the traditional exponential distribution, the new control chart is more flexible than the existing exponential time\u2010between\u2010events charts. The control chart performance is evaluated in terms of some useful measures, including the average run length (ARL), the expected quadratic loss, continuous ranked probability, and the relative ARL. The effect of parameter estimation using the maximum likelihood and Bayesian methods on the ARL is also discussed in this article. The study also presents an illustrative example and 4 case studies to highlight the practical relevance of the proposal.<\/jats:p>","DOI":"10.1002\/qre.2223","type":"journal-article","created":{"date-parts":[[2017,9,27]],"date-time":"2017-09-27T07:29:26Z","timestamp":1506497366000},"page":"2625-2651","source":"Crossref","is-referenced-by-count":36,"title":["Time\u2010between\u2010events control charts for an exponentiated class of distributions of the renewal process"],"prefix":"10.1002","volume":"33","author":[{"given":"Sajid","family":"Ali","sequence":"first","affiliation":[{"name":"Department of Statistics Quaid\u2010i\u2010Azam University Islamabad 45320 Pakistan"}]}],"member":"311","published-online":{"date-parts":[[2017,9,27]]},"reference":[{"key":"e_1_2_9_2_1","doi-asserted-by":"publisher","DOI":"10.1002\/qre.1957"},{"key":"e_1_2_9_3_1","doi-asserted-by":"publisher","DOI":"10.1108\/eb002875"},{"key":"e_1_2_9_4_1","doi-asserted-by":"publisher","DOI":"10.1080\/00207540110073073"},{"key":"e_1_2_9_5_1","first-page":"435","article-title":"An ARL unbiased approach to setting control limits of CCC\u2010r charts for high yield processes","volume":"17","author":"Cheng SC","year":"2010","journal-title":"Int J Prod Res"},{"key":"e_1_2_9_6_1","doi-asserted-by":"publisher","DOI":"10.1080\/07408170600728905"},{"key":"e_1_2_9_7_1","doi-asserted-by":"publisher","DOI":"10.1007\/s00170-007-1338-8"},{"key":"e_1_2_9_8_1","doi-asserted-by":"publisher","DOI":"10.1007\/s00170-011-3345-z"},{"key":"e_1_2_9_9_1","doi-asserted-by":"publisher","DOI":"10.1080\/00207543.2014.974848"},{"key":"e_1_2_9_10_1","doi-asserted-by":"publisher","DOI":"10.1002\/qre.1813"},{"key":"e_1_2_9_11_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cie.2016.01.012"},{"key":"e_1_2_9_12_1","doi-asserted-by":"publisher","DOI":"10.1111\/1467-842X.00072"},{"key":"e_1_2_9_13_1","doi-asserted-by":"publisher","DOI":"10.1080\/02331888.2011.614950"},{"key":"e_1_2_9_14_1","doi-asserted-by":"publisher","DOI":"10.1002\/1521-4036(200102)43:1<117::AID-BIMJ117>3.0.CO;2-R"},{"key":"e_1_2_9_15_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.csda.2004.05.008"},{"key":"e_1_2_9_16_1","doi-asserted-by":"publisher","DOI":"10.1080\/03610929808832134"},{"key":"e_1_2_9_17_1","doi-asserted-by":"publisher","DOI":"10.1080\/002075400189482"},{"key":"e_1_2_9_18_1","doi-asserted-by":"publisher","DOI":"10.1016\/S0951-8320(02)00041-8"},{"key":"e_1_2_9_19_1","doi-asserted-by":"publisher","DOI":"10.2307\/1270164"},{"key":"e_1_2_9_20_1","doi-asserted-by":"publisher","DOI":"10.1142\/S0218539397000114"},{"key":"e_1_2_9_21_1","doi-asserted-by":"publisher","DOI":"10.1080\/02664760801921232"},{"key":"e_1_2_9_22_1","doi-asserted-by":"publisher","DOI":"10.1080\/07408170802712582"},{"key":"e_1_2_9_23_1","doi-asserted-by":"publisher","DOI":"10.1007\/s001700300004"},{"key":"e_1_2_9_24_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijpe.2011.08.026"},{"key":"e_1_2_9_25_1","unstructured":"R Core Team.R: a language and environment for statistical computing Vienna Austria. Available from:http:\/\/www.R-project.org\/;2013."},{"key":"e_1_2_9_26_1","doi-asserted-by":"publisher","DOI":"10.1080\/07474940802445790"},{"key":"e_1_2_9_27_1","doi-asserted-by":"publisher","DOI":"10.1080\/07474940802446046"},{"key":"e_1_2_9_28_1","doi-asserted-by":"publisher","DOI":"10.1080\/00949655.2012.685944"},{"key":"e_1_2_9_29_1","doi-asserted-by":"publisher","DOI":"10.1175\/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2"},{"key":"e_1_2_9_30_1","doi-asserted-by":"publisher","DOI":"10.1111\/j.1467-9868.2007.00587.x"},{"key":"e_1_2_9_31_1","doi-asserted-by":"publisher","DOI":"10.1198\/016214506000001437"},{"key":"e_1_2_9_32_1","doi-asserted-by":"publisher","DOI":"10.1287\/mnsc.31.5.527"},{"key":"e_1_2_9_33_1","unstructured":"Wolfram Research I.Mathematica. Champaign Illinois. Available from:http:\/\/www.wolfram.com\/;2014."},{"key":"e_1_2_9_34_1","doi-asserted-by":"publisher","DOI":"10.1002\/qre.1556"},{"key":"e_1_2_9_35_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.mcm.2008.06.012"},{"key":"e_1_2_9_36_1","unstructured":"FoxD.Statistical methods for biosecurity monitoring and surveillance. Australian Centre of Exceence for Risk Analysis (ACERA) University of Melbourne Melbourne Australia.http:\/\/www.acera.unimelb.edu.au\/materials\/endorsed\/0605.pdf;2006."},{"key":"e_1_2_9_37_1","doi-asserted-by":"publisher","DOI":"10.1080\/03610920903391329"},{"key":"e_1_2_9_38_1","doi-asserted-by":"publisher","DOI":"10.1093\/biomet\/66.1.191"},{"key":"e_1_2_9_39_1","doi-asserted-by":"publisher","DOI":"10.1080\/03610926.2011.597918"},{"key":"e_1_2_9_40_1","doi-asserted-by":"publisher","DOI":"10.1007\/BF02242271"},{"key":"e_1_2_9_41_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.csda.2007.06.004"},{"key":"e_1_2_9_42_1","doi-asserted-by":"publisher","DOI":"10.2307\/2347565"}],"container-title":["Quality and Reliability Engineering International"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.wiley.com\/onlinelibrary\/tdm\/v1\/articles\/10.1002%2Fqre.2223","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/qre.2223","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,10,7]],"date-time":"2023-10-07T03:16:20Z","timestamp":1696648580000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1002\/qre.2223"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,9,27]]},"references-count":41,"journal-issue":{"issue":"8","published-print":{"date-parts":[[2017,12]]}},"alternative-id":["10.1002\/qre.2223"],"URL":"https:\/\/doi.org\/10.1002\/qre.2223","archive":["Portico"],"relation":{},"ISSN":["0748-8017","1099-1638"],"issn-type":[{"value":"0748-8017","type":"print"},{"value":"1099-1638","type":"electronic"}],"subject":[],"published":{"date-parts":[[2017,9,27]]}}}