{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,19]],"date-time":"2025-02-19T21:40:14Z","timestamp":1740001214035,"version":"3.37.3"},"reference-count":20,"publisher":"Wiley","issue":"1","license":[{"start":{"date-parts":[[2010,4,6]],"date-time":"2010-04-06T00:00:00Z","timestamp":1270512000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Quality & Reliability Eng"],"published-print":{"date-parts":[[2011,2]]},"abstract":"Abstract<\/jats:title>In this paper two multivariate statistical methodologies are compared in order to estimate a multi\u2010input multi\u2010output transfer function model in an industrial polymerization process. In these contexts, process variables are usually autocorrelated (i.e. there is time\u2010dependence between observations), posing some problems to classical linear regression models. The two methodologies to be compared are both related to the analyses of multivariate time series: Box\u2010Jenkins methodology and partial least squares time series. Both methodologies are compared keeping in mind different issues, such as the simplicity of the process modeling (i.e. the steps of the identification, estimation and validation of the model), the usefulness of the graphical tools, the goodness of fit, and the parsimony of the estimated models. Real data from a polymerization process are used to illustrate the performance of the methodologies under study. Copyright \u00a9 2010 John Wiley & Sons, Ltd.<\/jats:p>","DOI":"10.1002\/qre.1102","type":"journal-article","created":{"date-parts":[[2010,4,6]],"date-time":"2010-04-06T07:30:30Z","timestamp":1270539030000},"page":"107-124","source":"Crossref","is-referenced-by-count":5,"title":["Comparison of multivariate statistical methods for dynamic systems modeling"],"prefix":"10.1002","volume":"27","author":[{"given":"Susana","family":"Barcel\u00f3","sequence":"first","affiliation":[]},{"given":"Santiago","family":"Vidal\u2010Puig","sequence":"additional","affiliation":[]},{"given":"Alberto","family":"Ferrer","sequence":"additional","affiliation":[]}],"member":"311","published-online":{"date-parts":[[2011,1,27]]},"reference":[{"key":"e_1_2_10_2_2","first-page":"19","article-title":"Control Estad\u00edstico de Procesos con Din\u00e1mica: Revisi\u00f3n del Estado del Arte y Perspectivas de Futuro","volume":"46","author":"Ferrer A","year":"2004","journal-title":"Estad\u00edstica Espa\u00f1ola"},{"volume-title":"Time Series Analysis. Forecasting and Control","year":"2008","author":"Box GEP","key":"e_1_2_10_3_2"},{"key":"e_1_2_10_4_2","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4612-0679-8"},{"volume-title":"Time Series Analysis and Forecasting","year":"2006","author":"Liu L\u2010M","key":"e_1_2_10_5_2"},{"key":"e_1_2_10_6_2","doi-asserted-by":"publisher","DOI":"10.1016\/0169-7439(93)E0075-F"},{"key":"e_1_2_10_7_2","first-page":"77","article-title":"Identification of finite impulse response models by principal components regression: Frequency\u2010response properties","volume":"4","author":"Wise BM","year":"1992","journal-title":"Process Control and Quality"},{"key":"e_1_2_10_8_2","doi-asserted-by":"publisher","DOI":"10.1002\/cem.1180070102"},{"key":"e_1_2_10_9_2","doi-asserted-by":"publisher","DOI":"10.1021\/ie960180e"},{"key":"e_1_2_10_10_2","doi-asserted-by":"publisher","DOI":"10.1002\/asmb.716"},{"key":"e_1_2_10_11_2","doi-asserted-by":"publisher","DOI":"10.2307\/1909577"},{"key":"e_1_2_10_12_2","doi-asserted-by":"publisher","DOI":"10.2307\/1911964"},{"key":"e_1_2_10_13_2","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1111\/j.2517-6161.1964.tb00553.x","article-title":"An analysis of transformations","volume":"26","author":"Box GEP","year":"1964","journal-title":"Journal of the Royal Statistical Society, Series B"},{"key":"e_1_2_10_14_2","doi-asserted-by":"publisher","DOI":"10.2307\/2290724"},{"key":"e_1_2_10_15_2","doi-asserted-by":"crossref","first-page":"391","DOI":"10.1080\/00401706.1974.10489208","article-title":"The analysis of closed\u2010loop dynamic stochastic system","volume":"16","author":"Box GEP","year":"1974","journal-title":"Technometrics"},{"volume-title":"Forecasting and Time series Analysis using the SCA Statistical System","year":"1997","author":"Liu L\u2010M","key":"e_1_2_10_16_2"},{"key":"e_1_2_10_17_2","doi-asserted-by":"publisher","DOI":"10.1016\/0003-2670(86)80028-9"},{"key":"e_1_2_10_18_2","doi-asserted-by":"publisher","DOI":"10.1080\/03610918808812681"},{"key":"e_1_2_10_19_2","doi-asserted-by":"publisher","DOI":"10.1002\/cem.1180020306"},{"key":"e_1_2_10_20_2","doi-asserted-by":"publisher","DOI":"10.1007\/978-94-017-1026-8_2"},{"volume-title":"Introduction to Multi\u2010 and Megavariate Data Analysis using Projection Methods (PCA & PLS)","year":"2006","author":"Eriksson L","key":"e_1_2_10_21_2"}],"container-title":["Quality and Reliability Engineering International"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.wiley.com\/onlinelibrary\/tdm\/v1\/articles\/10.1002%2Fqre.1102","content-type":"unspecified","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/qre.1102","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,2,19]],"date-time":"2025-02-19T21:25:22Z","timestamp":1740000322000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1002\/qre.1102"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2011,1,27]]},"references-count":20,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2011,2]]}},"alternative-id":["10.1002\/qre.1102"],"URL":"https:\/\/doi.org\/10.1002\/qre.1102","archive":["Portico"],"relation":{},"ISSN":["0748-8017","1099-1638"],"issn-type":[{"type":"print","value":"0748-8017"},{"type":"electronic","value":"1099-1638"}],"subject":[],"published":{"date-parts":[[2011,1,27]]}}}