{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,11,21]],"date-time":"2023-11-21T10:49:16Z","timestamp":1700563756598},"reference-count":22,"publisher":"Wiley","issue":"3","license":[{"start":{"date-parts":[[2009,8,4]],"date-time":"2009-08-04T00:00:00Z","timestamp":1249344000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"}],"funder":[{"name":"Isenberg Program for Technology Management"},{"name":"Isenberg School of Management, University of Massachusetts, Amherst"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Quality & Reliability Eng"],"published-print":{"date-parts":[[2010,4]]},"abstract":"Abstract<\/jats:title>Industrial processes are often monitored via data sampled at a high frequency and hence are likely to be autocorrelated time series that may or may not be stationary. To determine if a time series is stationary or not the standard approach is to check whether sample autocorrelation function fades out relatively quickly. An alternative and somewhat sounder approach is to use the variogram. In this article we review the basic properties of the variogram and then derive a general expression for asymptotic confidence intervals for variogram based on the Delta method. We illustrate the computations with an industrial process example. Copyright \u00a9 2009 John Wiley & Sons, Ltd.<\/jats:p>","DOI":"10.1002\/qre.1052","type":"journal-article","created":{"date-parts":[[2009,8,4]],"date-time":"2009-08-04T15:45:41Z","timestamp":1249400741000},"page":"259-265","source":"Crossref","is-referenced-by-count":3,"title":["Asymptotic confidence intervals for variograms of stationary time series"],"prefix":"10.1002","volume":"26","author":[{"given":"S\u00f8ren","family":"Bisgaard","sequence":"first","affiliation":[]},{"given":"Davit","family":"Khachatryan","sequence":"additional","affiliation":[]}],"member":"311","published-online":{"date-parts":[[2009,8,4]]},"reference":[{"issue":"4","key":"e_1_2_1_2_2","doi-asserted-by":"crossref","first-page":"409","DOI":"10.1080\/00224065.1996.11979699","article-title":"Multivariate SPC methods for product and process monitoring","volume":"28","author":"Kourti T","year":"1966","journal-title":"Journal of Quality Technology"},{"key":"e_1_2_1_3_2","volume-title":"Time Series Analysis: Forecasting and Control","author":"Box GEP","year":"1994"},{"key":"e_1_2_1_4_2","doi-asserted-by":"publisher","DOI":"10.2307\/1391421"},{"key":"e_1_2_1_5_2","series-title":"Wiley Series in Probability and Statistics","volume-title":"Statistical Control by Monitoring and Feedback Adjustment","author":"Box GEP","year":"1997"},{"key":"e_1_2_1_6_2","doi-asserted-by":"publisher","DOI":"10.1080\/08982110701241590"},{"key":"e_1_2_1_7_2","doi-asserted-by":"publisher","DOI":"10.2307\/2985674"},{"key":"e_1_2_1_8_2","doi-asserted-by":"publisher","DOI":"10.1002\/qre.1013"},{"key":"e_1_2_1_9_2","doi-asserted-by":"publisher","DOI":"10.2307\/2985832"},{"key":"e_1_2_1_10_2","doi-asserted-by":"publisher","DOI":"10.2307\/2685361"},{"key":"e_1_2_1_11_2","volume-title":"Objective Analysis of Meteorological Fields","author":"Gandin LS","year":"1963"},{"key":"e_1_2_1_12_2","first-page":"229","article-title":"The local structure of turbulence in an incomprehensible fluid at very large reynolds numbers","volume":"30","author":"Kolmogorov AN","year":"1941","journal-title":"Doklady Academii Nauk SSSR"},{"key":"e_1_2_1_13_2","doi-asserted-by":"publisher","DOI":"10.2113\/gsecongeo.58.8.1246"},{"key":"e_1_2_1_14_2","doi-asserted-by":"publisher","DOI":"10.1111\/1467-9884.00101"},{"key":"e_1_2_1_15_2","doi-asserted-by":"publisher","DOI":"10.1023\/A:1021733006262"},{"key":"e_1_2_1_16_2","doi-asserted-by":"publisher","DOI":"10.1023\/A:1011097228254"},{"key":"e_1_2_1_17_2","doi-asserted-by":"publisher","DOI":"10.1007\/BF01083951"},{"key":"e_1_2_1_18_2","doi-asserted-by":"publisher","DOI":"10.1029\/WR026i008p01787"},{"key":"e_1_2_1_19_2","series-title":"Wiley Series in Probability and Mathematical Statistics","doi-asserted-by":"crossref","DOI":"10.1002\/9781119115151","volume-title":"Statistics for Spatial Data","author":"Cressie N","year":"1993"},{"key":"e_1_2_1_20_2","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4899-0004-3"},{"key":"e_1_2_1_21_2","doi-asserted-by":"publisher","DOI":"10.1081\/QEN-200068575"},{"key":"e_1_2_1_22_2","doi-asserted-by":"publisher","DOI":"10.1081\/QEN-200056505"},{"key":"e_1_2_1_23_2","volume-title":"Linear Statistical Inference and its Applications","author":"Rao CR","year":"1974"}],"container-title":["Quality and Reliability Engineering International"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.wiley.com\/onlinelibrary\/tdm\/v1\/articles\/10.1002%2Fqre.1052","content-type":"unspecified","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.wiley.com\/onlinelibrary\/tdm\/v1\/articles\/10.1002%2Fqre.1052","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/qre.1052","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,21]],"date-time":"2023-11-21T10:20:26Z","timestamp":1700562026000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1002\/qre.1052"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2009,8,4]]},"references-count":22,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2010,4]]}},"alternative-id":["10.1002\/qre.1052"],"URL":"https:\/\/doi.org\/10.1002\/qre.1052","archive":["Portico"],"relation":{},"ISSN":["0748-8017","1099-1638"],"issn-type":[{"value":"0748-8017","type":"print"},{"value":"1099-1638","type":"electronic"}],"subject":[],"published":{"date-parts":[[2009,8,4]]}}}