{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,8,29]],"date-time":"2023-08-29T11:47:04Z","timestamp":1693309624085},"reference-count":19,"publisher":"Wiley","issue":"6","license":[{"start":{"date-parts":[[2021,7,12]],"date-time":"2021-07-12T00:00:00Z","timestamp":1626048000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"}],"content-domain":{"domain":["onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["Numerical Linear Algebra App"],"published-print":{"date-parts":[[2021,12]]},"abstract":"Abstract<\/jats:title>This article is devoted to the computation of the solution to fractional linear algebraic systems<\/jats:italic> using a differential\u2010based strategy to evaluate matrix\u2013vector products , with . More specifically, we propose ODE\u2010based preconditioners for efficiently solving fractional linear systems in combination with traditional sparse linear system preconditioners. Different types of preconditioners are derived (Jacobi, incomplete LU, Pad\u00e9) and numerically compared. The extension to systems is finally considered.<\/jats:p>","DOI":"10.1002\/nla.2399","type":"journal-article","created":{"date-parts":[[2021,7,12]],"date-time":"2021-07-12T08:15:07Z","timestamp":1626077707000},"update-policy":"http:\/\/dx.doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["ODE\u2010based double\u2010preconditioning for solving linear systems A\u03b1x=b and f(A)x=b"],"prefix":"10.1002","volume":"28","author":[{"given":"Xavier","family":"Antoine","sequence":"first","affiliation":[{"name":"Institut Elie Cartan de Lorraine Universit\u00e9 de Lorraine, UMR 7502, Inria Nancy\u2010Grand Est Vandoeuvre\u2010l\u00e8s\u2010Nancy Cedex France"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8854-4739","authenticated-orcid":false,"given":"Emmanuel","family":"Lorin","sequence":"additional","affiliation":[{"name":"School of Mathematics and Statistics Carleton University Ottawa Canada"},{"name":"Centre de Recherches Math\u00e9matiques Universit\u00e9 de Montr\u00e9al Montr\u00e9al Canada"}]}],"member":"311","published-online":{"date-parts":[[2021,7,12]]},"reference":[{"key":"e_1_2_9_2_1","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9780511840371"},{"key":"e_1_2_9_3_1","doi-asserted-by":"publisher","DOI":"10.1137\/16M1064714"},{"key":"e_1_2_9_4_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jcp.2019.04.025"},{"key":"e_1_2_9_5_1","doi-asserted-by":"publisher","DOI":"10.1515\/ans-2017-0014"},{"key":"e_1_2_9_6_1","doi-asserted-by":"publisher","DOI":"10.1090\/S0025-5718-2015-02937-8"},{"key":"e_1_2_9_7_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cam.2019.112627"},{"key":"e_1_2_9_8_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.bulsci.2011.12.004"},{"key":"e_1_2_9_9_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-14244-5_9"},{"key":"e_1_2_9_10_1","doi-asserted-by":"publisher","DOI":"10.1137\/140954040"},{"key":"e_1_2_9_11_1","doi-asserted-by":"publisher","DOI":"10.4208\/cicp.020709.221209a"},{"key":"e_1_2_9_12_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jcp.2019.109009"},{"key":"e_1_2_9_13_1","doi-asserted-by":"publisher","DOI":"10.1137\/17M1140819"},{"key":"e_1_2_9_14_1","doi-asserted-by":"publisher","DOI":"10.1007\/3-540-28504-0_2"},{"key":"e_1_2_9_15_1","doi-asserted-by":"publisher","DOI":"10.1137\/070700607"},{"key":"e_1_2_9_16_1","doi-asserted-by":"publisher","DOI":"10.1137\/S0895479800368688"},{"key":"e_1_2_9_17_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10915-017-0633-2"},{"key":"e_1_2_9_18_1","unstructured":"AntoineX LorinE. Double\u2010preconditioning for fractional linear systems. application to fractional Poisson equations.Submitted 2019."},{"key":"e_1_2_9_19_1","doi-asserted-by":"publisher","DOI":"10.1016\/S0764-4442(00)01793-6"},{"key":"e_1_2_9_20_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11075-020-00972-z"}],"container-title":["Numerical Linear Algebra with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/nla.2399","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/full-xml\/10.1002\/nla.2399","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/nla.2399","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,28]],"date-time":"2023-08-28T12:09:23Z","timestamp":1693224563000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1002\/nla.2399"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,7,12]]},"references-count":19,"journal-issue":{"issue":"6","published-print":{"date-parts":[[2021,12]]}},"alternative-id":["10.1002\/nla.2399"],"URL":"https:\/\/doi.org\/10.1002\/nla.2399","archive":["Portico"],"relation":{},"ISSN":["1070-5325","1099-1506"],"issn-type":[{"value":"1070-5325","type":"print"},{"value":"1099-1506","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,7,12]]},"assertion":[{"value":"2019-12-27","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2020-12-30","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2021-07-12","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}