{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T10:40:04Z","timestamp":1725187204049},"reference-count":30,"publisher":"Wiley","issue":"6","license":[{"start":{"date-parts":[[2021,6,6]],"date-time":"2021-06-06T00:00:00Z","timestamp":1622937600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"}],"funder":[{"DOI":"10.13039\/501100004663","name":"Ministry of Science and Technology, Taiwan","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004663","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["Numerical Linear Algebra App"],"published-print":{"date-parts":[[2021,12]]},"abstract":"Abstract<\/jats:title>In this article, the rank\u20101 approximation of a nonnegative tensor is considered. Mathematically, the approximation problem can be formulated as an optimization problem. The Karush\u2013Kuhn\u2013Tucker (KKT) point of the optimization problem can be obtained by computing the nonnegative Z\u2010eigenvectory<\/jats:bold>of enlarged tensor . Therefore, we propose an iterative method with prediction and correction steps for computing nonnegative Z\u2010eigenvectory<\/jats:bold>of enlarged tensor , called the continuation method. In the theoretical part, we show that the computation requires only flops for each iteration and the computed Z\u2010eigenvectory<\/jats:bold>has nonzero component block, and hence, the KKT point can be obtained. In addition, we show that the KKT point is a local optimizer of the optimization problem. Numerical experiments are provided to support the theoretical results.<\/jats:p>","DOI":"10.1002\/nla.2398","type":"journal-article","created":{"date-parts":[[2021,6,7]],"date-time":"2021-06-07T13:34:13Z","timestamp":1623072853000},"update-policy":"http:\/\/dx.doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Continuation methods for nonnegative rank\u20101 approximation of nonnegative tensors"],"prefix":"10.1002","volume":"28","author":[{"given":"Fu\u2010Shin","family":"Hsu","sequence":"first","affiliation":[{"name":"Department of Applied Mathematics National University of Kaohsiung Kaohsiung Taiwan"}]},{"given":"Yueh\u2010Cheng","family":"Kuo","sequence":"additional","affiliation":[{"name":"Department of Applied Mathematics National University of Kaohsiung Kaohsiung Taiwan"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2371-1193","authenticated-orcid":false,"given":"Ching\u2010Sung","family":"Liu","sequence":"additional","affiliation":[{"name":"Department of Applied Mathematics National University of Kaohsiung Kaohsiung Taiwan"}]}],"member":"311","published-online":{"date-parts":[[2021,6,6]]},"reference":[{"key":"e_1_2_9_2_1","doi-asserted-by":"publisher","DOI":"10.1007\/BF02310791"},{"key":"e_1_2_9_3_1","first-page":"1","volume-title":"UCLA working papers in phonetics","author":"Harshman RA","year":"1970"},{"key":"e_1_2_9_4_1","doi-asserted-by":"publisher","DOI":"10.1016\/0196-6774(90)90014-6"},{"key":"e_1_2_9_5_1","doi-asserted-by":"publisher","DOI":"10.1137\/07070111X"},{"key":"e_1_2_9_6_1","doi-asserted-by":"publisher","DOI":"10.1137\/06066518X"},{"key":"e_1_2_9_7_1","doi-asserted-by":"publisher","DOI":"10.1137\/S0895479899352045"},{"key":"e_1_2_9_8_1","doi-asserted-by":"publisher","DOI":"10.1137\/S0895479898346995"},{"key":"e_1_2_9_9_1","doi-asserted-by":"publisher","DOI":"10.1137\/S0895479801387413"},{"key":"e_1_2_9_10_1","doi-asserted-by":"publisher","DOI":"10.1137\/110835335"},{"key":"e_1_2_9_11_1","doi-asserted-by":"publisher","DOI":"10.1137\/100795802"},{"key":"e_1_2_9_12_1","doi-asserted-by":"crossref","unstructured":"AcarE DunlavyDM KoldaTG M\u00f8rupM. Scalable tensor factorizations with missing data technical report arXiv:1005.2197v1 [math.NA] 2010.","DOI":"10.1137\/1.9781611972801.61"},{"key":"e_1_2_9_13_1","doi-asserted-by":"crossref","unstructured":"BaderBW HarshmanRA KoldaTG. Temporal analysis of semantic graphs using ASALSAN. Proceedings of the 7th IEEE International Conference on Data Mining ICDM. Omaha NE;2007:33\u201342.","DOI":"10.1109\/ICDM.2007.54"},{"key":"e_1_2_9_14_1","doi-asserted-by":"crossref","first-page":"528","DOI":"10.1111\/j.2517-6161.1985.tb01383.x","article-title":"A model of high\u2010order Markov chains","volume":"47","author":"Raftery AE","year":"1985","journal-title":"J Royal Stat Soc Ser B"},{"key":"e_1_2_9_15_1","doi-asserted-by":"publisher","DOI":"10.1137\/18M1183480"},{"key":"e_1_2_9_16_1","unstructured":"JiangTX NgMK PanJ SongG. Nonnegative low rank tensor approximation and its application to multi\u2010dimensional images tech. report 2020.https:\/\/arxiv.org\/abs\/2007.14137."},{"key":"e_1_2_9_17_1","doi-asserted-by":"publisher","DOI":"10.1137\/130938207"},{"key":"e_1_2_9_18_1","first-page":"309","article-title":"A new convergence proof for the high\u2010order power method and generalizations","volume":"11","author":"Uschmajew A","year":"2015","journal-title":"Pacific J Optim"},{"key":"e_1_2_9_19_1","doi-asserted-by":"publisher","DOI":"10.1007\/s00211-018-0981-3"},{"key":"e_1_2_9_20_1","doi-asserted-by":"publisher","DOI":"10.1002\/nla.1877"},{"key":"e_1_2_9_21_1","doi-asserted-by":"publisher","DOI":"10.1137\/100801482"},{"key":"e_1_2_9_22_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11075-018-0498-y"},{"key":"e_1_2_9_23_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jmaa.2008.09.067"},{"volume-title":"Numerical optimization","year":"2006","author":"Nocedal J","key":"e_1_2_9_24_1"},{"key":"e_1_2_9_25_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.laa.2013.02.013"},{"key":"e_1_2_9_26_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jsc.2005.05.007"},{"key":"e_1_2_9_27_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jmaa.2006.02.071"},{"key":"e_1_2_9_28_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.laa.2011.04.014"},{"key":"e_1_2_9_29_1","doi-asserted-by":"publisher","DOI":"10.1137\/140985160"},{"key":"e_1_2_9_30_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cam.2018.02.027"},{"volume-title":"Lectures on numerical methods in bifurcation problems","year":"1987","author":"Keller HB","key":"e_1_2_9_31_1"}],"container-title":["Numerical Linear Algebra with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/nla.2398","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/full-xml\/10.1002\/nla.2398","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/nla.2398","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T10:22:08Z","timestamp":1725186128000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1002\/nla.2398"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6,6]]},"references-count":30,"journal-issue":{"issue":"6","published-print":{"date-parts":[[2021,12]]}},"alternative-id":["10.1002\/nla.2398"],"URL":"https:\/\/doi.org\/10.1002\/nla.2398","archive":["Portico"],"relation":{},"ISSN":["1070-5325","1099-1506"],"issn-type":[{"type":"print","value":"1070-5325"},{"type":"electronic","value":"1099-1506"}],"subject":[],"published":{"date-parts":[[2021,6,6]]},"assertion":[{"value":"2020-02-23","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2021-05-16","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2021-06-06","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}