{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,3,14]],"date-time":"2024-03-14T08:45:13Z","timestamp":1710405913620},"reference-count":50,"publisher":"Wiley","issue":"5","license":[{"start":{"date-parts":[[2021,5,6]],"date-time":"2021-05-06T00:00:00Z","timestamp":1620259200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100004543","name":"China Scholarship Council","doi-asserted-by":"publisher","award":["Contract No. 201906180033"],"id":[{"id":"10.13039\/501100004543","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["11471150"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["Numerical Linear Algebra App"],"published-print":{"date-parts":[[2021,10]]},"abstract":"Abstract<\/jats:title>We discuss the use of a matrix\u2010oriented approach for numerically solving the dense matrix equation AX<\/jats:italic>\u2009+\u2009XA<\/jats:italic>T<\/jats:italic><\/jats:sup>\u2009+\u2009M<\/jats:italic>1<\/jats:sub>XN<\/jats:italic>1<\/jats:sub>\u2009+\u2009\u2026\u2009+\u2009M<\/jats:italic>\u2113<\/jats:italic><\/jats:sub>XN<\/jats:italic>\u2113<\/jats:italic><\/jats:sub>\u2009=\u2009F<\/jats:italic>, with \u2113<\/jats:italic>\u2009\u2265\u20091, and M<\/jats:italic>i<\/jats:italic><\/jats:sub>,\u2009N<\/jats:italic>i<\/jats:italic><\/jats:sub>, i<\/jats:italic>\u2009=\u20091,\u2009\u2026\u2009,\u2009\u2113<\/jats:italic> of low rank. The approach relies on the Sherman\u2013Morrison\u2013Woodbury formula formally defined in the vectorized form of the problem, but applied in the matrix setting. This allows one to solve medium size dense problems with computational costs and memory requirements dramatically lower than with a Kronecker formulation. Application problems leading to medium size equations of this form are illustrated and the performance of the matrix\u2010oriented method is reported. The application of the procedure as the core step in the solution of the large\u2010scale problem is also shown. In addition, a new explicit method for linear tensor equations is proposed, that uses the discussed matrix equation procedure as a key building block.<\/jats:p>","DOI":"10.1002\/nla.2384","type":"journal-article","created":{"date-parts":[[2021,5,7]],"date-time":"2021-05-07T05:03:22Z","timestamp":1620363802000},"update-policy":"http:\/\/dx.doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["The Sherman\u2013Morrison\u2013Woodbury formula for generalized linear matrix equations and applications"],"prefix":"10.1002","volume":"28","author":[{"given":"Yue","family":"Hao","sequence":"first","affiliation":[{"name":"School of Mathematics and Statistics Lanzhou University Lanzhou PR China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0795-5865","authenticated-orcid":false,"given":"Valeria","family":"Simoncini","sequence":"additional","affiliation":[{"name":"Dipartimento di Matematica and AM2<\/sup> Alma Mater Studiorum \u2010 Universit\u00e0 di Bologna and IMATI\u2010CNR Bologna Italia"}]}],"member":"311","published-online":{"date-parts":[[2021,5,6]]},"reference":[{"key":"e_1_2_12_2_1","doi-asserted-by":"publisher","DOI":"10.1137\/1012104"},{"key":"e_1_2_12_3_1","series-title":"Studies in Computational Mathematics","volume-title":"Perturbation theory for matrix equations","author":"Konstantinov M","year":"2003"},{"key":"e_1_2_12_4_1","doi-asserted-by":"publisher","DOI":"10.1137\/09075041X"},{"key":"e_1_2_12_5_1","doi-asserted-by":"publisher","DOI":"10.1016\/S1474-6670(17)40318-1"},{"key":"e_1_2_12_6_1","doi-asserted-by":"publisher","DOI":"10.1007\/s00211-013-0521-0"},{"key":"e_1_2_12_7_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.sysconle.2010.06.003"},{"key":"e_1_2_12_8_1","doi-asserted-by":"publisher","DOI":"10.1007\/s00211-015-0777-7"},{"key":"e_1_2_12_9_1","doi-asserted-by":"publisher","DOI":"10.1515\/jnma-2020-0035"},{"key":"e_1_2_12_10_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10543-015-0575-8"},{"key":"e_1_2_12_11_1","doi-asserted-by":"publisher","DOI":"10.1137\/15M1032399"},{"key":"e_1_2_12_12_1","unstructured":"BuengerA SimonciniV StollM. A low\u2010rank matrix equation method for solving PDE\u2010constrained optimization problems;2020. arXiv preprint arXiv:2005.14499."},{"key":"e_1_2_12_13_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.amc.2008.09.022"},{"key":"e_1_2_12_14_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.amc.2011.03.148"},{"key":"e_1_2_12_15_1","doi-asserted-by":"publisher","DOI":"10.1002\/nla.1973"},{"key":"e_1_2_12_16_1","doi-asserted-by":"publisher","DOI":"10.1137\/130912839"},{"key":"e_1_2_12_17_1","doi-asserted-by":"publisher","DOI":"10.1002\/nla.603"},{"key":"e_1_2_12_18_1","doi-asserted-by":"publisher","DOI":"10.1137\/17M1157155"},{"key":"e_1_2_12_19_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.laa.2017.06.027"},{"key":"e_1_2_12_20_1","doi-asserted-by":"publisher","DOI":"10.56021\/9781421407944"},{"key":"e_1_2_12_21_1","doi-asserted-by":"publisher","DOI":"10.1137\/1023004"},{"key":"e_1_2_12_22_1","doi-asserted-by":"publisher","DOI":"10.1214\/aoms\/1177729893"},{"key":"e_1_2_12_23_1","doi-asserted-by":"publisher","DOI":"10.1137\/1031049"},{"key":"e_1_2_12_24_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.laa.2011.04.031"},{"issue":"25","key":"e_1_2_12_25_1","first-page":"701","article-title":"Preconditioning sparse nonsymmetric linear systems with the Sherman\u2013Morrison formula","volume":"11","author":"Bru R","year":"2003","journal-title":"Appl Math"},{"key":"e_1_2_12_26_1","doi-asserted-by":"publisher","DOI":"10.1137\/120872735"},{"key":"e_1_2_12_27_1","doi-asserted-by":"publisher","DOI":"10.1007\/b98874"},{"key":"e_1_2_12_28_1","first-page":"574","article-title":"Partitioning, tearing and modification of sparse linear systems","volume":"48","author":"Bunch JR","year":"1974","journal-title":"J Math Appl"},{"key":"e_1_2_12_29_1","volume-title":"Direct methods for sparse matrices","author":"Duff IS","year":"1989"},{"key":"e_1_2_12_30_1","doi-asserted-by":"publisher","DOI":"10.1137\/0906031"},{"key":"e_1_2_12_31_1","doi-asserted-by":"publisher","DOI":"10.1137\/0907034"},{"key":"e_1_2_12_32_1","doi-asserted-by":"publisher","DOI":"10.1137\/0614030"},{"key":"e_1_2_12_33_1","doi-asserted-by":"publisher","DOI":"10.1137\/S0895479894270178"},{"key":"e_1_2_12_34_1","doi-asserted-by":"publisher","DOI":"10.1080\/00207160.2012.716154"},{"key":"e_1_2_12_35_1","doi-asserted-by":"publisher","DOI":"10.1145\/361573.361582"},{"key":"e_1_2_12_36_1","doi-asserted-by":"publisher","DOI":"10.1145\/592843.592845"},{"key":"e_1_2_12_37_1","unstructured":"MATLAB 7;2017."},{"key":"e_1_2_12_38_1","volume-title":"Accuracy and stability of numerical algorithms","author":"Higham NJ","year":"1996"},{"key":"e_1_2_12_39_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.sysconle.2011.04.013"},{"key":"e_1_2_12_40_1","doi-asserted-by":"publisher","DOI":"10.1137\/06066120X"},{"key":"e_1_2_12_41_1","doi-asserted-by":"publisher","DOI":"10.1515\/cmam-2018-0014"},{"key":"e_1_2_12_42_1","doi-asserted-by":"publisher","DOI":"10.1515\/1569395054012767"},{"key":"e_1_2_12_43_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.chemolab.2011.09.001"},{"key":"e_1_2_12_44_1","doi-asserted-by":"publisher","DOI":"10.1137\/140968938"},{"key":"e_1_2_12_45_1","doi-asserted-by":"publisher","DOI":"10.1137\/090752286"},{"key":"e_1_2_12_46_1","doi-asserted-by":"publisher","DOI":"10.1137\/120864210"},{"key":"e_1_2_12_47_1","doi-asserted-by":"publisher","DOI":"10.1137\/100785715"},{"key":"e_1_2_12_48_1","doi-asserted-by":"publisher","DOI":"10.1137\/100799010"},{"key":"e_1_2_12_49_1","doi-asserted-by":"publisher","DOI":"10.1137\/07070111X"},{"key":"e_1_2_12_50_1","doi-asserted-by":"publisher","DOI":"10.1002\/gamm.201310004"},{"key":"e_1_2_12_51_1","doi-asserted-by":"publisher","DOI":"10.1007\/s40574-020-00247-4"}],"container-title":["Numerical Linear Algebra with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/nla.2384","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/full-xml\/10.1002\/nla.2384","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/nla.2384","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,29]],"date-time":"2023-08-29T21:56:27Z","timestamp":1693346187000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1002\/nla.2384"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,5,6]]},"references-count":50,"journal-issue":{"issue":"5","published-print":{"date-parts":[[2021,10]]}},"alternative-id":["10.1002\/nla.2384"],"URL":"https:\/\/doi.org\/10.1002\/nla.2384","archive":["Portico"],"relation":{},"ISSN":["1070-5325","1099-1506"],"issn-type":[{"value":"1070-5325","type":"print"},{"value":"1099-1506","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,5,6]]},"assertion":[{"value":"2020-07-18","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2021-03-22","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2021-05-06","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}