{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,5,2]],"date-time":"2024-05-02T14:16:56Z","timestamp":1714659416244},"reference-count":33,"publisher":"Wiley","issue":"2","license":[{"start":{"date-parts":[[2014,12,8]],"date-time":"2014-12-08T00:00:00Z","timestamp":1417996800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Journal of Graph Theory"],"published-print":{"date-parts":[[2015,10]]},"abstract":"Abstract<\/jats:title>Given a connected graph, in many cases it is possible to construct a structure tree that provides information about the ends of the graph or its connectivity. For example Stallings' theorem on the structure of groups with more than one end can be proved by analyzing the action of the group on a structure tree and Tutte used a structure tree to investigate finite 2\u2010connected graphs, that are not 3\u2010connected. Most of these structure tree theories have been based on edge cuts, which are components of the graph obtained by removing finitely many edges. A new axiomatic theory is described here using vertex cuts, components of the graph obtained by removing finitely many vertices. This generalizes Tutte's decomposition of 2\u2010connected graphs to k<\/jats:italic>\u2010connected graphs for any k<\/jats:italic>, in finite and infinite graphs. The theory can be applied to nonlocally finite graphs with more than one vertex end, i.e. ends that can be separated by removing a finite number of vertices. This gives a decomposition for a group acting on such a graph, generalizing Stallings' theorem. Further applications include the classification of distance transitive graphs and k<\/jats:italic>\u2010CS\u2010transitive graphs.<\/jats:p>","DOI":"10.1002\/jgt.21844","type":"journal-article","created":{"date-parts":[[2014,12,9]],"date-time":"2014-12-09T07:02:59Z","timestamp":1418108579000},"page":"136-171","source":"Crossref","is-referenced-by-count":8,"title":["Vertex Cuts"],"prefix":"10.1002","volume":"80","author":[{"given":"M. J.","family":"Dunwoody","sequence":"first","affiliation":[{"name":"UNIVERSITY OF SOUTHAMPTON"}]},{"given":"B.","family":"Kr\u00f6n","sequence":"additional","affiliation":[{"name":"UNIVERSITY OF VIENNA"}]}],"member":"311","published-online":{"date-parts":[[2014,12,8]]},"reference":[{"key":"e_1_2_12_2_1","doi-asserted-by":"publisher","DOI":"10.1007\/s00493-014-2898-5"},{"key":"e_1_2_12_3_1","doi-asserted-by":"crossref","unstructured":"D. E.Cohen Groups of cohomological dimension one Springer Lecture Notes 245 1972.","DOI":"10.1007\/BFb0069645"},{"key":"e_1_2_12_4_1","volume-title":"Groups acting on graphs","author":"Dicks W.","year":"1989"},{"key":"e_1_2_12_5_1","doi-asserted-by":"crossref","unstructured":"V.DiekertandA.Weiss Context\u2010free groups and their structure trees International J. of Algebra and Computation 23 (2013) 611\u2013642.","DOI":"10.1142\/S0218196713500124"},{"key":"e_1_2_12_6_1","doi-asserted-by":"publisher","DOI":"10.1007\/BF02579278"},{"key":"e_1_2_12_7_1","doi-asserted-by":"publisher","DOI":"10.1007\/s002220000063"},{"key":"e_1_2_12_8_1","unstructured":"M. J.Dunwoody Planar graphs and covers Pre\u2010print (2007) http:\/\/www.personal.soton.ac.uk\/mjd7\/planar.pdf(26.07.2012) arXiv:0708.0920."},{"key":"e_1_2_12_9_1","unstructured":"M. J.Dunwoody Structure trees and networks arXiv 1311.3929."},{"key":"e_1_2_12_10_1","article-title":"The structure of locally finite two\u2010connected graphs","volume":"2","author":"Droms C.","year":"1995","journal-title":"Electronic J Comb"},{"key":"e_1_2_12_11_1","doi-asserted-by":"crossref","unstructured":"A.EvangelidouandP.Papasoglu A cactus theorem for edge cuts International J. of Algebra and Computation 24 (2014) 95\u2013112.","DOI":"10.1142\/S0218196714500076"},{"key":"e_1_2_12_12_1","doi-asserted-by":"publisher","DOI":"10.1007\/BF01174375"},{"key":"e_1_2_12_13_1","doi-asserted-by":"publisher","DOI":"10.2307\/1968869"},{"key":"e_1_2_12_14_1","doi-asserted-by":"publisher","DOI":"10.1007\/BF02566233"},{"key":"e_1_2_12_15_1","doi-asserted-by":"publisher","DOI":"10.1007\/BF02950767"},{"key":"e_1_2_12_16_1","doi-asserted-by":"publisher","DOI":"10.1016\/0012-365X(92)90594-6"},{"key":"e_1_2_12_17_1","doi-asserted-by":"publisher","DOI":"10.1007\/s00493-012-2694-z"},{"key":"e_1_2_12_18_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11856-011-0177-3"},{"key":"e_1_2_12_19_1","doi-asserted-by":"publisher","DOI":"10.1090\/S0002-9947-2012-05666-2"},{"key":"e_1_2_12_20_1","doi-asserted-by":"crossref","first-page":"427","DOI":"10.1017\/S0305004101005321","article-title":"End compactifications in non\u2010locally finite graphs","volume":"131","author":"Kr\u00f6n B.","year":"2001","journal-title":"Math Proc Cambridge Phil Soc"},{"key":"e_1_2_12_21_1","doi-asserted-by":"publisher","DOI":"10.1002\/mana.200510587"},{"key":"e_1_2_12_22_1","doi-asserted-by":"publisher","DOI":"10.1007\/BF02941469"},{"key":"e_1_2_12_23_1","doi-asserted-by":"publisher","DOI":"10.1515\/gcc.2010.013"},{"key":"e_1_2_12_24_1","doi-asserted-by":"publisher","DOI":"10.1112\/plms\/s3-60.3.503"},{"key":"e_1_2_12_25_1","doi-asserted-by":"publisher","DOI":"10.1017\/S0305004100075551"},{"key":"e_1_2_12_26_1","unstructured":"G.Niblo andM.Sageev \u201cThe Kropholler conjecture\u201d In Guido's Book of Conjectures Monographies de L'Enseignement Math\u00e9matique 40. L'Enseignement Math\u00e9matique Geneva 2008."},{"issue":"2","key":"e_1_2_12_27_1","article-title":"Decomposing infinite 2\u2010connected graphs into 3\u2010connected components","volume":"11","author":"Richter R. B.","year":"2004","journal-title":"Electronic J Comb"},{"key":"e_1_2_12_28_1","unstructured":"1980 Springer\u2010Verlag Berlin\u2010New York J.\u2010P. Serre Trees Translated from the French by John Stillwell"},{"key":"e_1_2_12_29_1","doi-asserted-by":"publisher","DOI":"10.2307\/1970577"},{"key":"e_1_2_12_30_1","doi-asserted-by":"crossref","unstructured":"J. R.Stallings Groups of cohomological dimension one. Applications of Categorical Algebra (Proc. Sympos. Pure Math. Vol.XVIII New York 1968) 124\u2013128Am. Math. Soc. Providence R.I. (1970).","DOI":"10.1090\/pspum\/017\/0255689"},{"key":"e_1_2_12_31_1","volume-title":"Yale Mathematical Monographs","author":"Stallings J. R.","year":"1969"},{"key":"e_1_2_12_32_1","doi-asserted-by":"publisher","DOI":"10.1006\/jctb.1993.1042"},{"key":"e_1_2_12_33_1","volume-title":"Graph Theory","author":"Tutte W. T.","year":"1984"},{"key":"e_1_2_12_34_1","doi-asserted-by":"publisher","DOI":"10.1016\/0012-365X(91)90348-6"}],"container-title":["Journal of Graph Theory"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.wiley.com\/onlinelibrary\/tdm\/v1\/articles\/10.1002%2Fjgt.21844","content-type":"unspecified","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/jgt.21844","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,10,3]],"date-time":"2023-10-03T20:21:40Z","timestamp":1696364500000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1002\/jgt.21844"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014,12,8]]},"references-count":33,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2015,10]]}},"alternative-id":["10.1002\/jgt.21844"],"URL":"https:\/\/doi.org\/10.1002\/jgt.21844","archive":["Portico"],"relation":{},"ISSN":["0364-9024","1097-0118"],"issn-type":[{"value":"0364-9024","type":"print"},{"value":"1097-0118","type":"electronic"}],"subject":[],"published":{"date-parts":[[2014,12,8]]}}}