{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,1,9]],"date-time":"2025-01-09T05:19:01Z","timestamp":1736399941492,"version":"3.32.0"},"reference-count":94,"publisher":"Wiley","issue":"28","license":[{"start":{"date-parts":[[2024,6,21]],"date-time":"2024-06-21T00:00:00Z","timestamp":1718928000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":["onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["J Comput Chem"],"published-print":{"date-parts":[[2024,10,30]]},"abstract":"Abstract<\/jats:title>In this work, we discuss the use of a recently introduced machine learning (ML) technique known as Fourier neural operators (FNO) as an efficient alternative to the traditional<\/jats:italic> solution of the time\u2010dependent Schr\u00f6dinger equation (TDSE). FNOs are ML models which are employed in the approximated solution of partial differential equations. For a wavepacket propagating in an anharmonic potential and for a tunneling system, we show that the FNO approach can accurately and faithfully model wavepacket propagation via the density. Additionally, we demonstrate that FNOs can be a suitable replacement for traditional TDSE solvers in cases where the results of the quantum dynamical simulation are required repeatedly such as in the case of parameter optimization problems (e.g., control). The speed\u2010up from the FNO method allows for its combination with the Markov\u2010chain Monte Carlo approach in applications that involve solving inverse problems such as optimal and coherent laser control of the outcome of dynamical processes.<\/jats:p>","DOI":"10.1002\/jcc.27443","type":"journal-article","created":{"date-parts":[[2024,6,21]],"date-time":"2024-06-21T08:34:48Z","timestamp":1718958888000},"page":"2360-2373","update-policy":"https:\/\/doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Accelerating wavepacket propagation with machine learning"],"prefix":"10.1002","volume":"45","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-2700-9307","authenticated-orcid":false,"given":"Kanishka","family":"Singh","sequence":"first","affiliation":[{"name":"Theory of Electron Dynamics and Spectroscopy Helmholtz\u2010Zentrum Berlin f\u00fcr Materialien und Energie GmbH Berlin Germany"},{"name":"Institute of Chemistry and Biochemistry Freie Universit\u00e4t Berlin Berlin Germany"}]},{"given":"Ka Hei","family":"Lee","sequence":"additional","affiliation":[{"name":"Theory of Electron Dynamics and Spectroscopy Helmholtz\u2010Zentrum Berlin f\u00fcr Materialien und Energie GmbH Berlin Germany"},{"name":"Fachbereich Physik Freie Universit\u00e4t Berlin Berlin Germany"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3924-7804","authenticated-orcid":false,"given":"Daniel","family":"Pel\u00e1ez","sequence":"additional","affiliation":[{"name":"CNRS, Institut des Sciences Mol\u00e9culaires d'Orsay Universit\u00e9 Paris\u2010Saclay Orsay France"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3827-9169","authenticated-orcid":false,"given":"Annika","family":"Bande","sequence":"additional","affiliation":[{"name":"Theory of Electron Dynamics and Spectroscopy Helmholtz\u2010Zentrum Berlin f\u00fcr Materialien und Energie GmbH Berlin Germany"},{"name":"Institute of Inorganic Chemistry Leibniz University Hannover Hannover Germany"},{"name":"Cluster of Excellence PhoenixD Leibniz University Hannover Hannover Germany"}]}],"member":"311","published-online":{"date-parts":[[2024,6,21]]},"reference":[{"key":"e_1_2_11_2_1","doi-asserted-by":"publisher","DOI":"10.1063\/1.4963916"},{"key":"e_1_2_11_3_1","doi-asserted-by":"publisher","DOI":"10.1039\/D0CP03929B"},{"key":"e_1_2_11_4_1","doi-asserted-by":"publisher","DOI":"10.1016\/S0370-1573(99)00047-2"},{"key":"e_1_2_11_5_1","first-page":"100","volume":"482","author":"Pel\u00e1ez D.","year":"2017","journal-title":"J. Chem. Phys."},{"key":"e_1_2_11_6_1","doi-asserted-by":"publisher","DOI":"10.1063\/1.4773021"},{"key":"e_1_2_11_7_1","doi-asserted-by":"publisher","DOI":"10.1063\/1.4856135"},{"key":"e_1_2_11_8_1","doi-asserted-by":"publisher","DOI":"10.1063\/1.5140085"},{"key":"e_1_2_11_9_1","doi-asserted-by":"publisher","DOI":"10.1063\/5.0027143"},{"key":"e_1_2_11_10_1","doi-asserted-by":"publisher","DOI":"10.1063\/5.0139224"},{"key":"e_1_2_11_11_1","doi-asserted-by":"publisher","DOI":"10.1063\/5.0146703"},{"key":"e_1_2_11_12_1","doi-asserted-by":"publisher","DOI":"10.1063\/5.0046425"},{"key":"e_1_2_11_13_1","doi-asserted-by":"publisher","DOI":"10.1063\/1.4999153"},{"key":"e_1_2_11_14_1","doi-asserted-by":"publisher","DOI":"10.1016\/0021-9991(91)90137-A"},{"key":"e_1_2_11_15_1","doi-asserted-by":"publisher","DOI":"10.1051\/m2an\/2010018"},{"key":"e_1_2_11_16_1","doi-asserted-by":"publisher","DOI":"10.1080\/00268976.2024.2306881"},{"key":"e_1_2_11_17_1","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jpclett.5b00831"},{"key":"e_1_2_11_18_1","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevLett.108.058301"},{"key":"e_1_2_11_19_1","doi-asserted-by":"publisher","DOI":"10.1063\/1.5100141"},{"key":"e_1_2_11_20_1","doi-asserted-by":"publisher","DOI":"10.1021\/acs.chemrev.0c00665"},{"key":"e_1_2_11_21_1","doi-asserted-by":"publisher","DOI":"10.1039\/D2DD00102K"},{"key":"e_1_2_11_22_1","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jctc.2c01034"},{"key":"e_1_2_11_23_1","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jctc.0c00430"},{"key":"e_1_2_11_24_1","doi-asserted-by":"publisher","DOI":"10.1142\/S0219633617300014"},{"key":"e_1_2_11_25_1","doi-asserted-by":"publisher","DOI":"10.1021\/acs.chemrev.1c00033"},{"key":"e_1_2_11_26_1","doi-asserted-by":"publisher","DOI":"10.1039\/C7ME00107J"},{"key":"e_1_2_11_27_1","doi-asserted-by":"publisher","DOI":"10.3389\/fchem.2019.00809"},{"key":"e_1_2_11_28_1","doi-asserted-by":"publisher","DOI":"10.1146\/annurev-physchem-042018-052331"},{"key":"e_1_2_11_29_1","doi-asserted-by":"publisher","DOI":"10.1126\/sciadv.abi8605"},{"key":"e_1_2_11_30_1","unstructured":"A.Sehanobish H. H.Corzo O.Kara D.vanDijk Learning potentials of quantum systems using deep neural networks.arXiv:2006.13297.2021."},{"key":"e_1_2_11_31_1","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jpclett.1c02672"},{"key":"e_1_2_11_32_1","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevA.105.042403"},{"key":"e_1_2_11_33_1","doi-asserted-by":"publisher","DOI":"10.1038\/s41598-022-06442-x"},{"key":"e_1_2_11_34_1","unstructured":"Y.Yao C.Cao S.Haas M.Agarwal D.Khanna M.Abram Emulating quantum dynamics with neural networks via knowledge distillation.arXiv:2203.10200.2022."},{"key":"e_1_2_11_35_1","first-page":"1","volume":"2022","author":"Jin H.","year":"2022","journal-title":"Int. Joint Conf. Neural Netw."},{"key":"e_1_2_11_36_1","unstructured":"K.Shah P.Stiller N.Hoffmann A.Cangi Physics\u2010informed neural networks as solvers for the time\u2010dependent Schr\u00f6dinger equation.arXiv:2210.12522.2022."},{"key":"e_1_2_11_37_1","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jpclett.1c03117"},{"key":"e_1_2_11_38_1","doi-asserted-by":"publisher","DOI":"10.1115\/1.3424338"},{"key":"e_1_2_11_39_1","doi-asserted-by":"publisher","DOI":"10.1017\/S0305004100023197"},{"key":"e_1_2_11_40_1","doi-asserted-by":"publisher","DOI":"10.1090\/gsm\/019"},{"key":"e_1_2_11_41_1","doi-asserted-by":"publisher","DOI":"10.1063\/5.0095270"},{"key":"e_1_2_11_42_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jcp.2020.110079"},{"key":"e_1_2_11_43_1","doi-asserted-by":"publisher","DOI":"10.1029\/2019WR026731"},{"key":"e_1_2_11_44_1","unstructured":"J.Berner M.Dablander P.Grohs Numerically solving parametric families of high\u2010dimensional kolmogorov partial differential equations via deep learning.arXiv:2011.04602.2020."},{"key":"e_1_2_11_45_1","doi-asserted-by":"publisher","DOI":"10.1073\/pnas.1718942115"},{"key":"e_1_2_11_46_1","first-page":"2415","volume-title":"Proceedings of the 36th International Conference on Machine Learning","author":"Greenfeld D.","year":"2019"},{"key":"e_1_2_11_47_1","doi-asserted-by":"publisher","DOI":"10.1073\/pnas.1814058116"},{"key":"e_1_2_11_48_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jcp.2018.10.045"},{"key":"e_1_2_11_49_1","doi-asserted-by":"publisher","DOI":"10.1073\/pnas.2101784118"},{"key":"e_1_2_11_50_1","doi-asserted-by":"publisher","DOI":"10.1038\/s42256-021-00302-5"},{"key":"e_1_2_11_51_1","unstructured":"Z.Li N.Kovachki K.Azizzadenesheli B.Liu K.Bhattacharya A.Stuart A.Anandkumar Neural operator: graph kernel network for partial differential equations.arXiv:2003.03485.2020."},{"key":"e_1_2_11_52_1","doi-asserted-by":"publisher","DOI":"10.1017\/S0956792520000182"},{"key":"e_1_2_11_53_1","doi-asserted-by":"publisher","DOI":"10.1137\/20M133957X"},{"key":"e_1_2_11_54_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4757-3679-3_5"},{"key":"e_1_2_11_55_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijplas.2022.103512"},{"key":"e_1_2_11_56_1","unstructured":"J.Pathak S.Subramanian P.Harrington S.Raja A.Chattopadhyay M.Mardani T.Kurth D.Hall Z.Li K.Azizzadenesheli P.Hassanzadeh K.Kashinath A.Anandkumar FourCastNet: a global data\u2010driven high\u2010resolution weather model using adaptive fourier neural operators.arXiv:2202.11214.2022."},{"key":"e_1_2_11_57_1","doi-asserted-by":"publisher","DOI":"10.1039\/D2EE04204E"},{"key":"e_1_2_11_58_1","doi-asserted-by":"publisher","DOI":"10.3390\/a16020124"},{"key":"e_1_2_11_59_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.advwatres.2022.104180"},{"key":"e_1_2_11_60_1","doi-asserted-by":"publisher","DOI":"10.1088\/2632-2153\/acd168"},{"key":"e_1_2_11_61_1","doi-asserted-by":"publisher","DOI":"10.1016\/S0301-0104(01)00222-1"},{"key":"e_1_2_11_62_1","doi-asserted-by":"publisher","DOI":"10.1063\/1.1677387"},{"key":"e_1_2_11_63_1","doi-asserted-by":"publisher","DOI":"10.1063\/1.5133144"},{"key":"e_1_2_11_64_1","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevA.99.023422"},{"key":"e_1_2_11_65_1","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevLett.113.073005"},{"key":"e_1_2_11_66_1","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jpclett.7b00662"},{"key":"e_1_2_11_67_1","doi-asserted-by":"publisher","DOI":"10.1063\/1.3149789"},{"key":"e_1_2_11_68_1","doi-asserted-by":"publisher","DOI":"10.1063\/1.475576"},{"key":"e_1_2_11_69_1","doi-asserted-by":"publisher","DOI":"10.1016\/0301-0104(89)90012-8"},{"key":"e_1_2_11_70_1","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevA.37.4950"},{"key":"e_1_2_11_71_1","doi-asserted-by":"publisher","DOI":"10.1039\/B714821F"},{"key":"e_1_2_11_72_1","doi-asserted-by":"publisher","DOI":"10.1146\/annurev.physchem.48.1.601"},{"key":"e_1_2_11_73_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-94-009-0909-0"},{"key":"e_1_2_11_74_1","doi-asserted-by":"publisher","DOI":"10.1214\/13-STS421"},{"key":"e_1_2_11_75_1","doi-asserted-by":"publisher","DOI":"10.1063\/1.448136"},{"key":"e_1_2_11_76_1","doi-asserted-by":"publisher","DOI":"10.1080\/0144235X.2015.1051354"},{"key":"e_1_2_11_77_1","doi-asserted-by":"publisher","DOI":"10.1016\/0021-9991(82)90091-2"},{"key":"e_1_2_11_78_1","doi-asserted-by":"publisher","DOI":"10.1016\/0009-2614(90)87014-I"},{"key":"e_1_2_11_79_1","doi-asserted-by":"publisher","DOI":"10.1002\/9780470141731.ch4"},{"key":"e_1_2_11_80_1","unstructured":"Z.Li N.Kovachki K.Azizzadenesheli B.Liu K.Bhattacharya A.Stuart A.Anandkumar Fourier neural operator for parametric partial differential equations.arXiv:2010.08895.2021."},{"key":"e_1_2_11_81_1","doi-asserted-by":"publisher","DOI":"10.1109\/72.392253"},{"key":"e_1_2_11_82_1","unstructured":"K.O'Shea R.Nash An introduction to convolutional neural networks.arXiv:1511.08458.2015."},{"key":"e_1_2_11_83_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jmr.2004.11.004"},{"key":"e_1_2_11_84_1","doi-asserted-by":"publisher","DOI":"10.1063\/1.5091520"},{"key":"e_1_2_11_85_1","first-page":"111431","volume":"555","author":"Ramos Ramos A. R.","year":"2021","journal-title":"Front. Phys."},{"key":"e_1_2_11_86_1","doi-asserted-by":"publisher","DOI":"10.1063\/5.0015896"},{"key":"e_1_2_11_87_1","doi-asserted-by":"publisher","DOI":"10.1088\/2632-2153\/ad0100"},{"key":"e_1_2_11_88_1","doi-asserted-by":"publisher","DOI":"10.1111\/1467-9884.00117"},{"key":"e_1_2_11_89_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ymssp.2020.106836"},{"key":"e_1_2_11_90_1","unstructured":"C. P.Robert The Metropolis\u2010Hastings algorithm.arXiv:1504.01896.2016."},{"key":"e_1_2_11_91_1","doi-asserted-by":"publisher","DOI":"10.1214\/aoms\/1177704472"},{"key":"e_1_2_11_92_1","doi-asserted-by":"publisher","DOI":"10.4310\/CMS.2023.v21.n6.a11"},{"key":"e_1_2_11_93_1","unstructured":"W. M.Czarnecki S.Osindero M.Jaderberg G.\u015awirszcz R.Pascanu Sobolev training for neural networks.arXiv:1706.04859.2017."},{"volume-title":"Curta: A General\u2010purpose High\u2010Performance Computer at ZEDAT, Freie Universit\u00e4t Berlin","year":"2020","author":"Bennett L.","key":"e_1_2_11_94_1"},{"key":"e_1_2_11_95_1","doi-asserted-by":"publisher","DOI":"10.17815\/jlsrf-5-173"}],"container-title":["Journal of Computational Chemistry"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/jcc.27443","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,2]],"date-time":"2024-09-02T16:25:30Z","timestamp":1725294330000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1002\/jcc.27443"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,6,21]]},"references-count":94,"journal-issue":{"issue":"28","published-print":{"date-parts":[[2024,10,30]]}},"alternative-id":["10.1002\/jcc.27443"],"URL":"https:\/\/doi.org\/10.1002\/jcc.27443","archive":["Portico"],"relation":{},"ISSN":["0192-8651","1096-987X"],"issn-type":[{"type":"print","value":"0192-8651"},{"type":"electronic","value":"1096-987X"}],"subject":[],"published":{"date-parts":[[2024,6,21]]},"assertion":[{"value":"2023-12-15","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2024-05-16","order":2,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2024-06-21","order":3,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}