{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T13:18:50Z","timestamp":1726406330638},"reference-count":48,"publisher":"Wiley","issue":"6","license":[{"start":{"date-parts":[[2024,10,25]],"date-time":"2024-10-25T00:00:00Z","timestamp":1729814400000},"content-version":"am","delay-in-days":366,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#am"},{"start":{"date-parts":[[2023,10,25]],"date-time":"2023-10-25T00:00:00Z","timestamp":1698192000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"}],"funder":[{"DOI":"10.13039\/501100002241","name":"Japan Science and Technology Agency","doi-asserted-by":"publisher","award":["JPMJFS2120"],"id":[{"id":"10.13039\/501100002241","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001691","name":"Japan Society for the Promotion of Science","doi-asserted-by":"publisher","award":["7321K12027"],"id":[{"id":"10.13039\/501100001691","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["J Comput Chem"],"published-print":{"date-parts":[[2024,3,5]]},"abstract":"Abstract<\/jats:title>Chemical reaction outcome prediction presents a fundamental challenge in synthetic chemistry. Most existing machine learning (ML) approaches focus on chemical reactions of typical elements. We developed a simple ML model focused on organo\u2010transition metal\u2010catalyzed reactions (OMCRs). Instead of overall reactions observed in experiments, we let the ML model learn the sequence of simplified elementary reactions. This drastically reduced the complexity of the model and helped it find common patterns from distinct reactions. We let a graph neural network learn the reactivity index of a pair of atoms. The model was able to learn a wide variety of OMCRs, and the accuracy of reaction prediction reached 97%, even though the model has extremely fewer learnable parameters than other standards. The learned reactivity indices of bonds nicely summarize the knowledge of reactions in the dataset.<\/jats:p>","DOI":"10.1002\/jcc.27243","type":"journal-article","created":{"date-parts":[[2023,10,25]],"date-time":"2023-10-25T10:34:40Z","timestamp":1698230080000},"page":"341-351","update-policy":"http:\/\/dx.doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Learning organo\u2010transition metal catalyzed reactions by graph neural networks"],"prefix":"10.1002","volume":"45","author":[{"given":"Motoji","family":"Sakai","sequence":"first","affiliation":[{"name":"Department of Informatics Nagoya University Nagoya Japan"}]},{"given":"Mitsunori","family":"Kaneshige","sequence":"additional","affiliation":[{"name":"Department of Informatics Nagoya University Nagoya Japan"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0271-1159","authenticated-orcid":false,"given":"Koji","family":"Yasuda","sequence":"additional","affiliation":[{"name":"Department of Informatics Nagoya University Nagoya Japan"},{"name":"Institute of Materials and Systems for Sustainability Nagoya University Nagoya Japan"}]}],"member":"311","published-online":{"date-parts":[[2023,10,25]]},"reference":[{"key":"e_1_2_8_2_1","doi-asserted-by":"publisher","DOI":"10.1021\/acs.chemrev.1c00033"},{"key":"e_1_2_8_3_1","doi-asserted-by":"publisher","DOI":"10.1039\/D2SC05089G"},{"key":"e_1_2_8_4_1","unstructured":"J.Nam J.Kim arXiv1612.09529v1.2016.\u00a0https:\/\/arxiv.org\/abs\/1612.09529."},{"key":"e_1_2_8_5_1","doi-asserted-by":"publisher","DOI":"10.1039\/C8SC02339E"},{"key":"e_1_2_8_6_1","doi-asserted-by":"publisher","DOI":"10.1021\/acscentsci.9b00576"},{"key":"e_1_2_8_7_1","first-page":"1","volume":"111","author":"Tetko I. V.","year":"2020","journal-title":"Nat. Commun."},{"key":"e_1_2_8_8_1","doi-asserted-by":"publisher","DOI":"10.1088\/2632-2153\/ac3ffb"},{"key":"e_1_2_8_9_1","doi-asserted-by":"publisher","DOI":"10.1126\/science.aar5169"},{"key":"e_1_2_8_10_1","doi-asserted-by":"publisher","DOI":"10.26434\/CHEMRXIV.12613214.V1"},{"key":"e_1_2_8_11_1","doi-asserted-by":"publisher","DOI":"10.1039\/D0CC02657C"},{"key":"e_1_2_8_12_1","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jcim.0c01234"},{"key":"e_1_2_8_13_1","first-page":"1","volume":"14","author":"Wang X.","year":"2022","journal-title":"Aust. J. Chem."},{"key":"e_1_2_8_14_1","doi-asserted-by":"publisher","DOI":"10.1039\/D1CP05878A"},{"key":"e_1_2_8_15_1","unstructured":"D.Lowe Chemical reactions from US patents (1976\u2010Sep2016).2017https:\/\/doi.org\/10.6084\/m9.figshare.5104873.v1"},{"key":"e_1_2_8_16_1","volume-title":"Organotransition Metal Chemistry: From Bonding to Catalysis","author":"Hartwig J. F.","year":"2010"},{"key":"e_1_2_8_17_1","doi-asserted-by":"publisher","DOI":"10.1021\/acs.oprd.9b00161"},{"key":"e_1_2_8_18_1","first-page":"1","volume":"10","author":"Li Y.","year":"2018","journal-title":"Aust. J. Chem."},{"key":"e_1_2_8_19_1","doi-asserted-by":"publisher","DOI":"10.1021\/ja01094a008"},{"key":"e_1_2_8_20_1","unstructured":"J.Gilmer S. S.Schoenholz P. F.Riley O.Vinyals G. E.Dahl 34th Int. Conf. Mach. Learn.ICML 2017.2053."},{"key":"e_1_2_8_21_1","first-page":"3538","volume":"2018","author":"Li Q.","year":"2018","journal-title":"Artif. Intell. AAAI"},{"key":"e_1_2_8_22_1","first-page":"32","author":"Paszke A.","year":"2019","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"e_1_2_8_23_1","unstructured":"M.Fey J. E.Lenssen arXiv1903.02428.2019.https:\/\/doi.org\/10.48550\/arXiv.1903.02428"},{"key":"e_1_2_8_24_1","doi-asserted-by":"publisher","DOI":"10.1039\/C8SC04228D"},{"key":"e_1_2_8_25_1","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jcim.2c00321"},{"key":"e_1_2_8_26_1","doi-asserted-by":"publisher","DOI":"10.1038\/s42256-022-00526-z"},{"key":"e_1_2_8_27_1","doi-asserted-by":"publisher","DOI":"10.1039\/c1cs15236j"},{"key":"e_1_2_8_28_1","doi-asserted-by":"publisher","DOI":"10.1002\/anie.200601612"},{"key":"e_1_2_8_29_1","doi-asserted-by":"publisher","DOI":"10.1039\/C0SC00330A"},{"key":"e_1_2_8_30_1","doi-asserted-by":"publisher","DOI":"10.1021\/ol005728z"},{"key":"e_1_2_8_31_1","doi-asserted-by":"publisher","DOI":"10.1021\/ja035483w"},{"key":"e_1_2_8_32_1","doi-asserted-by":"publisher","DOI":"10.1126\/science.166.3902.178"},{"key":"e_1_2_8_33_1","doi-asserted-by":"publisher","DOI":"10.1021\/ci00025a032"},{"key":"e_1_2_8_34_1","doi-asserted-by":"publisher","DOI":"10.1021\/ci900157k"},{"key":"e_1_2_8_35_1","doi-asserted-by":"publisher","DOI":"10.1126\/science.3838594"},{"key":"e_1_2_8_36_1","doi-asserted-by":"publisher","DOI":"10.1002\/anie.201506101"},{"key":"e_1_2_8_37_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.chempr.2018.02.002"},{"key":"e_1_2_8_38_1","doi-asserted-by":"publisher","DOI":"10.1021\/acscentsci.7b00064"},{"key":"e_1_2_8_39_1","doi-asserted-by":"publisher","DOI":"10.1002\/chem.201605499"},{"key":"e_1_2_8_40_1","doi-asserted-by":"publisher","DOI":"10.1021\/acscentsci.6b00219"},{"key":"e_1_2_8_41_1","doi-asserted-by":"publisher","DOI":"10.1021\/ci00057a005"},{"key":"e_1_2_8_42_1","unstructured":"M.Abadi P.Barham J.Chen Z.Chen A.Davis J.Dean M.Devin S.Ghemawat G.Irving M.Isard M.Kudlur J.Levenberg R.Monga S.Moore D. G.Murray B.Steiner P.Tucker V.Vasudevan P.Warden M.Wicke Y.Yu X.Zheng G.Brain Proc. 12th USENIX Symp. Oper. Syst. Des. Implement 2016 16 265."},{"key":"e_1_2_8_43_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.aiopen.2021.01.001"},{"key":"e_1_2_8_44_1","first-page":"2604","author":"Jin W.","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"e_1_2_8_45_1","unstructured":"K.Do T.Tran S.Venkatesh arXiv1812.09441.2018.https:\/\/doi.org\/10.48550\/arXiv.1812.09441"},{"key":"e_1_2_8_46_1","unstructured":"J.Bradshaw M. J.Kusner B.Paige M. H. S. S.Benevolentai J.Miguel Hern\u00e1ndez\u2010Lobato arXiv1805.10970.2018https:\/\/doi.org\/10.48550\/arXiv.1805.10970"},{"key":"e_1_2_8_47_1","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jcim.1c00537"},{"key":"e_1_2_8_48_1","doi-asserted-by":"publisher","DOI":"10.26434\/CHEMRXIV.11659563.V1"},{"key":"e_1_2_8_49_1","first-page":"904","volume":"139","author":"Bi H.","year":"2021","journal-title":"Proceedings of the 38th International Conference on Machine Learning"}],"container-title":["Journal of Computational Chemistry"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/am-pdf\/10.1002\/jcc.27243","content-type":"application\/pdf","content-version":"am","intended-application":"syndication"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/jcc.27243","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,21]],"date-time":"2024-01-21T13:59:11Z","timestamp":1705845551000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1002\/jcc.27243"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,10,25]]},"references-count":48,"journal-issue":{"issue":"6","published-print":{"date-parts":[[2024,3,5]]}},"alternative-id":["10.1002\/jcc.27243"],"URL":"https:\/\/doi.org\/10.1002\/jcc.27243","archive":["Portico"],"relation":{},"ISSN":["0192-8651","1096-987X"],"issn-type":[{"value":"0192-8651","type":"print"},{"value":"1096-987X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,10,25]]},"assertion":[{"value":"2023-07-05","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2023-10-04","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2023-10-25","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}