{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T02:26:14Z","timestamp":1740104774936,"version":"3.37.3"},"reference-count":56,"publisher":"Wiley","issue":"11","license":[{"start":{"date-parts":[[2022,8,8]],"date-time":"2022-08-08T00:00:00Z","timestamp":1659916800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"},{"start":{"date-parts":[[2022,8,8]],"date-time":"2022-08-08T00:00:00Z","timestamp":1659916800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/doi.wiley.com\/10.1002\/tdm_license_1.1"}],"funder":[{"DOI":"10.13039\/501100001809","name":"the National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62162024","62162022"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100014718","name":"the Major science and technology project of Hainan Province","doi-asserted-by":"publisher","award":["ZDKJ2020012"],"id":[{"id":"10.13039\/100014718","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["Int J of Intelligent Sys"],"published-print":{"date-parts":[[2022,11]]},"DOI":"10.1002\/int.22976","type":"journal-article","created":{"date-parts":[[2022,8,8]],"date-time":"2022-08-08T11:26:13Z","timestamp":1659957973000},"page":"8968-8987","update-policy":"https:\/\/doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Foreground object structure transfer for unsupervised domain adaptation"],"prefix":"10.1155","volume":"37","author":[{"given":"Jieren","family":"Cheng","sequence":"first","affiliation":[{"name":"School of Computer Science and Technology Hainan University Haikou China"},{"name":"Hainan Blockchain Technology Engineering Research Center Haikou China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-6060-4816","authenticated-orcid":false,"given":"Le","family":"Liu","sequence":"additional","affiliation":[{"name":"School of Computer Science and Technology Hainan University Haikou China"}]},{"given":"Boyi","family":"Liu","sequence":"additional","affiliation":[{"name":"Guangdong\u2010Hong Kong\u2010Macao Joint Laboratory of Human\u2010Machine Intelligence\u2010Synergy Systems The Hong Kong University of Science and Technology Hong Kong China"}]},{"given":"Ke","family":"Zhou","sequence":"additional","affiliation":[{"name":"School of Cyberspace Security Hainan University Haikou China"}]},{"given":"Qiaobo","family":"Da","sequence":"additional","affiliation":[{"name":"School of Cyberspace Security Hainan University Haikou China"}]},{"given":"Yue","family":"Yang","sequence":"additional","affiliation":[{"name":"School of Cyberspace Security Hainan University Haikou China"}]}],"member":"311","published-online":{"date-parts":[[2022,8,8]]},"reference":[{"key":"e_1_2_9_2_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jnca.2020.102633"},{"key":"e_1_2_9_3_1","doi-asserted-by":"publisher","DOI":"10.1002\/int.22841"},{"key":"e_1_2_9_4_1","doi-asserted-by":"publisher","DOI":"10.1002\/int.22848"},{"key":"e_1_2_9_5_1","doi-asserted-by":"crossref","unstructured":"JiangW MaZ LiS XiaoH YangJ.Privacy budget management and noise reusing in multichain environment.Int J Intell Syst.2021;1\u201014.doi:10.1002\/int.22619","DOI":"10.1002\/int.22619"},{"key":"e_1_2_9_6_1","doi-asserted-by":"publisher","DOI":"10.1002\/int.22673"},{"key":"e_1_2_9_7_1","doi-asserted-by":"publisher","DOI":"10.1002\/int.22853"},{"key":"e_1_2_9_8_1","doi-asserted-by":"publisher","DOI":"10.1002\/int.22625"},{"key":"e_1_2_9_9_1","doi-asserted-by":"publisher","DOI":"10.1002\/int.22365"},{"key":"e_1_2_9_10_1","doi-asserted-by":"publisher","DOI":"10.1108\/SSMT-04-2021-0013"},{"key":"e_1_2_9_11_1","doi-asserted-by":"crossref","unstructured":"SezerA AltanA. Optimization of deep learning model parameters in classification of solder paste defects.\u00a02021 3rd International Congress on Human\u2010Computer Interaction Optimization and Robotic Applications (HORA);2021:1\u20106.doi:10.1109\/HORA52670.2021.9461342","DOI":"10.1109\/HORA52670.2021.9461342"},{"key":"e_1_2_9_12_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.chaos.2020.110071"},{"key":"e_1_2_9_13_1","doi-asserted-by":"crossref","unstructured":"DengJ DongW SocherR LiLJ LiK Fei\u2010FeiL. ImageNet: a large\u2010scale hierarchical image database. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2009:248\u2010255.doi:10.1109\/CVPR.2009.5206848","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"e_1_2_9_14_1","doi-asserted-by":"crossref","unstructured":"TorralbaA EfrosAA. Unbiased look at dataset bias. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Vol 77;2011:1521\u20101528.doi:10.1109\/CVPR.2011.5995347","DOI":"10.1109\/CVPR.2011.5995347"},{"key":"e_1_2_9_15_1","doi-asserted-by":"crossref","unstructured":"TzengE HoffmanJ SaenkoK DarrellT. Adversarial discriminative domain adaptation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Vol17;2017:7167\u20107176.doi:10.1109\/CVPR.2017.316","DOI":"10.1109\/CVPR.2017.316"},{"key":"e_1_2_9_16_1","doi-asserted-by":"crossref","unstructured":"SaenkoK KulisB FritzM DarrellT. Adapting visual category models to new domains. European conference on computer vision (ECCV);2010:213\u2010226.doi:10.1007\/978-3-642-15561-1","DOI":"10.1007\/978-3-642-15561-1_16"},{"key":"e_1_2_9_17_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10994-009-5152-4"},{"key":"e_1_2_9_18_1","first-page":"1","article-title":"Analysis of representations for domain adaptation","volume":"19","author":"Ben\u2010David S","year":"2006","journal-title":"Adv Neural Inform Process Syst"},{"key":"e_1_2_9_19_1","unstructured":"LongM CaoY WangJ JordanM. Learning transferable features with deep adaptation networks. International Conference on Machine Learning.2015:97\u2010105."},{"key":"e_1_2_9_20_1","unstructured":"LongM ZhuH WangJ JordanMI. Deep transfer learning with joint adaptation networks. International Conference on Machine Learning.2017:2208\u20102217."},{"key":"e_1_2_9_21_1","unstructured":"LongM CaoZ WangJ JordanMI.Conditional adversarial domain adaptation.Advances in Neural Information Processing Systems;2018:31."},{"key":"e_1_2_9_22_1","doi-asserted-by":"crossref","unstructured":"HaeusserP FrerixT MordvintsevA CremersD. Associative domain adaptation. Proceedings of the IEEE International Conference on Computer Vision.2017:2765\u20102773.","DOI":"10.1109\/ICCV.2017.301"},{"key":"e_1_2_9_23_1","doi-asserted-by":"crossref","unstructured":"WuZ XiongY YuSX LinD. Unsupervised feature learning via non\u2010parametric instance discrimination. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:3733\u20103742.","DOI":"10.1109\/CVPR.2018.00393"},{"key":"e_1_2_9_24_1","doi-asserted-by":"crossref","unstructured":"KangG JiangL YangY HauptmannAG. Contrastive adaptation network for unsupervised domain adaptation. Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition.2019:4893\u20104902.doi:10.1109\/CVPR.2019.00503","DOI":"10.1109\/CVPR.2019.00503"},{"key":"e_1_2_9_25_1","doi-asserted-by":"crossref","unstructured":"PanY YaoT LiY WangY NgoCW MeiT. Transferrable prototypical networks for unsupervised domain adaptation. Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition.2019:2239\u20102247.doi:10.1109\/CVPR.2019.00234","DOI":"10.1109\/CVPR.2019.00234"},{"key":"e_1_2_9_26_1","doi-asserted-by":"crossref","unstructured":"VenkateswaraH EusebioJ ChakrabortyS PanchanathanS. Deep hashing network for unsupervised domain adaptation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:5018\u20105027.doi:10.1109\/CVPR.2017.572","DOI":"10.1109\/CVPR.2017.572"},{"key":"e_1_2_9_27_1","unstructured":"GoodfellowI Pouget\u2010AbadieJ MirzaM et al. Generative adversarial nets. Advances in neural information processing systems; 2014:27."},{"issue":"1","key":"e_1_2_9_28_1","first-page":"2096","article-title":"Domain\u2010adversarial training of neural networks","volume":"17","author":"Ganin Y","year":"2016","journal-title":"J Mach Learn Res"},{"key":"e_1_2_9_29_1","doi-asserted-by":"crossref","unstructured":"PinheiroPO. Unsupervised domain adaptation with similarity learning. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:8004\u20108013.doi:10.1109\/CVPR.2018.00835","DOI":"10.1109\/CVPR.2018.00835"},{"key":"e_1_2_9_30_1","doi-asserted-by":"crossref","unstructured":"ZhangK GongM Sch\u00f6lkopfB. Multi\u2010source domain adaptation: A causal view. Twenty\u2010ninth AAAI Conference on Artificial Intelligence;2015.","DOI":"10.1609\/aaai.v29i1.9542"},{"key":"e_1_2_9_31_1","unstructured":"SankaranarayananS BalajiY JainA LimSN ChellappaR. Unsupervised domain adaptation for semantic segmentation with gans. arXiv preprint arXiv:1711.06969; 2017."},{"key":"e_1_2_9_32_1","doi-asserted-by":"crossref","unstructured":"ZhangY TangH JiaK TanM. Domain\u2010symmetric networks for adversarial domain adaptation. Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition;2019:5031\u20105040.doi:10.1109\/CVPR.2019.00517","DOI":"10.1109\/CVPR.2019.00517"},{"key":"e_1_2_9_33_1","doi-asserted-by":"crossref","unstructured":"SunB SaenkoK. Deep coral: Correlation alignment for deep domain adaptation. European Conference on Computer Vision;2016:443\u2010450.doi:10.1007\/978-3-319-49409-8","DOI":"10.1007\/978-3-319-49409-8_35"},{"key":"e_1_2_9_34_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2020.3014218"},{"key":"e_1_2_9_35_1","doi-asserted-by":"crossref","unstructured":"L\u00eaTienN HabrardA SebbanM.Differentially private optimal transport: application to domain adaptation.International Joint Conferences on Artificial Intelligence Organization;2019:2852\u20102858.doi:10.24963\/ijcai.2019\/395","DOI":"10.24963\/ijcai.2019\/395"},{"key":"e_1_2_9_36_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2019.2908635"},{"key":"e_1_2_9_37_1","doi-asserted-by":"crossref","unstructured":"ShaoY LiL RenW GaoC SangN. Domain adaptation for image dehazing. Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition.2020:2808\u20102817.doi:10.1109\/CVPR42600.2020.00288","DOI":"10.1109\/CVPR42600.2020.00288"},{"key":"e_1_2_9_38_1","doi-asserted-by":"publisher","DOI":"10.1214\/13-AOS1140"},{"key":"e_1_2_9_39_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2018.2874567"},{"key":"e_1_2_9_40_1","doi-asserted-by":"publisher","DOI":"10.1006\/jcom.2001.0586"},{"key":"e_1_2_9_41_1","doi-asserted-by":"crossref","unstructured":"HeK ZhangX RenS SunJ. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770\u2010778.doi:10.1109\/CVPR.2016.90","DOI":"10.1109\/CVPR.2016.90"},{"key":"e_1_2_9_42_1","unstructured":"GaninY LempitskyV. Unsupervised domain adaptation by backpropagation. International Conference on Machine Learning.2015:1180\u20101189."},{"key":"e_1_2_9_43_1","doi-asserted-by":"crossref","unstructured":"TangH ChenK JiaK. Unsupervised domain adaptation via structurally regularized deep clustering. Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition2020:8725\u20108735.doi:10.1109\/CVPR42600.2020.00875","DOI":"10.1109\/CVPR42600.2020.00875"},{"key":"e_1_2_9_44_1","unstructured":"LiuH LongM WangJ JordanM. Transferable adversarial training: a general approach to adapting deep classifiers. International Conference on Machine Learning.2019:4013\u20104022."},{"key":"e_1_2_9_45_1","doi-asserted-by":"crossref","unstructured":"XuR LiG YangJ LinL. Larger norm more transferable: an adaptive feature norm approach for unsupervised domain adaptation. Proceedings of the IEEE\/CVF International Conference on Computer Vision.2019:1426\u20101435.","DOI":"10.1109\/ICCV.2019.00151"},{"key":"e_1_2_9_46_1","unstructured":"ShuR BuiHH NaruiH ErmonS. A dirt\u2010t approach to unsupervised domain adaptation. arXiv preprint arXiv:1802.08735.2018."},{"key":"e_1_2_9_47_1","unstructured":"XieS ZhengZ ChenL ChenC. Learning semantic representations for unsupervised domain adaptation. International conference on machine learning.2018:5423\u20105432."},{"key":"e_1_2_9_48_1","doi-asserted-by":"crossref","unstructured":"SaitoK WatanabeK UshikuY HaradaT. Maximum classifier discrepancy for unsupervised domain adaptation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:3723\u20103732.doi:10.1109\/CVPR.2018.00392","DOI":"10.1109\/CVPR.2018.00392"},{"key":"e_1_2_9_49_1","doi-asserted-by":"crossref","unstructured":"ZhangW OuyangW LiW XuD. Collaborative and adversarial network for unsupervised domain adaptation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:3801\u20103809.doi:10.1109\/CVPR.2018.00400","DOI":"10.1109\/CVPR.2018.00400"},{"key":"e_1_2_9_50_1","doi-asserted-by":"crossref","unstructured":"ChangWG YouT SeoS KwakS HanB. Domain\u2010specific batch normalization for unsupervised domain adaptation. Proceedings of the IEEE\/CVF conference on Computer Vision and Pattern Recognition.2019:7354\u20107362.doi:10.1109\/CVPR.2019.00753","DOI":"10.1109\/CVPR.2019.00753"},{"key":"e_1_2_9_51_1","doi-asserted-by":"crossref","unstructured":"WangX LiL YeW LongM WangJ. Transferable attention for domain adaptation. Proceedings of the AAAI Conference on Artificial Intelligence. Vol 33; 2019:5345\u20105352.","DOI":"10.1609\/aaai.v33i01.33015345"},{"key":"e_1_2_9_52_1","unstructured":"ChenX WangS LongM WangJ. Transferability vs. discriminability: Batch spectral penalization for adversarial domain adaptation. International Conference on Machine Learning.2019:1081\u20101090."},{"key":"e_1_2_9_53_1","unstructured":"ZhangY LiuT LongM JordanM. Bridging theory and algorithm for domain adaptation. International Conference on Machine Learning.2019:7404\u20107413."},{"key":"e_1_2_9_54_1","unstructured":"WangH TianJ LiS ZhaoH TianQ WuF LiX. Unsupervised domain adaptation for image classification via structure\u2010conditioned adversarial learning. arXiv preprint arXiv:2103.02808.2021."},{"key":"e_1_2_9_55_1","doi-asserted-by":"crossref","unstructured":"RoyS SiarohinA SanginetoE BuloSR SebeN RicciE. Unsupervised domain adaptation using feature\u2010whitening and consensus loss. Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition.2019:9471\u20109480.doi:10.1109\/CVPR.2019.00970","DOI":"10.1109\/CVPR.2019.00970"},{"key":"e_1_2_9_56_1","unstructured":"SaitoK UshikuY HaradaT SaenkoK. Adversarial dropout regularization. Proceedings of the Sixth International Conference on Learning Representations.2018.doi:10.48550\/arXiv.1711.01575"},{"key":"e_1_2_9_57_1","unstructured":"FrenchG MackiewiczM FisherM. Self\u2010ensembling for visual domain adaptation. Proceedings of the Sixth International Conference on Learning Representations 2018.doi:10.48550\/arXiv.1706.05208"}],"container-title":["International Journal of Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/int.22976","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/full-xml\/10.1002\/int.22976","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/int.22976","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,2,9]],"date-time":"2023-02-09T15:32:46Z","timestamp":1675956766000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1002\/int.22976"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,8,8]]},"references-count":56,"journal-issue":{"issue":"11","published-print":{"date-parts":[[2022,11]]}},"alternative-id":["10.1002\/int.22976"],"URL":"https:\/\/doi.org\/10.1002\/int.22976","archive":["Portico"],"relation":{},"ISSN":["0884-8173","1098-111X"],"issn-type":[{"type":"print","value":"0884-8173"},{"type":"electronic","value":"1098-111X"}],"subject":[],"published":{"date-parts":[[2022,8,8]]},"assertion":[{"value":"2022-03-21","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2022-07-24","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2022-08-08","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}