{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T02:25:42Z","timestamp":1740104742302,"version":"3.37.3"},"reference-count":51,"publisher":"Wiley","issue":"11","license":[{"start":{"date-parts":[[2022,7,7]],"date-time":"2022-07-07T00:00:00Z","timestamp":1657152000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"},{"start":{"date-parts":[[2022,7,7]],"date-time":"2022-07-07T00:00:00Z","timestamp":1657152000000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/doi.wiley.com\/10.1002\/tdm_license_1.1"}],"content-domain":{"domain":["onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["Int J of Intelligent Sys"],"published-print":{"date-parts":[[2022,11]]},"DOI":"10.1002\/int.22951","type":"journal-article","created":{"date-parts":[[2022,7,7]],"date-time":"2022-07-07T11:07:04Z","timestamp":1657192024000},"page":"8490-8522","update-policy":"https:\/\/doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":7,"title":["Decentralized federated meta\u2010learning framework for few\u2010shot multitask learning"],"prefix":"10.1155","volume":"37","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-9113-7130","authenticated-orcid":false,"given":"Xiaoli","family":"Li","sequence":"first","affiliation":[{"name":"School of Computer Science and Engineering Sun Yat\u2010sen University Guangzhou China"}]},{"given":"Yuzheng","family":"Li","sequence":"additional","affiliation":[{"name":"School of Computer Science and Engineering Sun Yat\u2010sen University Guangzhou China"}]},{"given":"Jining","family":"Wang","sequence":"additional","affiliation":[{"name":"School of Computer Science and Engineering Sun Yat\u2010sen University Guangzhou China"}]},{"given":"Chuan","family":"Chen","sequence":"additional","affiliation":[{"name":"School of Computer Science and Engineering Sun Yat\u2010sen University Guangzhou China"}]},{"given":"Liu","family":"Yang","sequence":"additional","affiliation":[{"name":"School of Computer Science and Technology Tianjin University Tianjin China"}]},{"given":"Zibin","family":"Zheng","sequence":"additional","affiliation":[{"name":"School of Computer Science and Engineering Sun Yat\u2010sen University Guangzhou China"}]}],"member":"311","published-online":{"date-parts":[[2022,7,7]]},"reference":[{"key":"e_1_2_7_2_1","doi-asserted-by":"publisher","DOI":"10.1145\/3298981"},{"key":"e_1_2_7_3_1","unstructured":"Konecn\u00fdJ McMahanHB RamageD Richt\u00e1rikP. Federated optimization: distributed machine learning for on\u2010device intelligence.CoRR.2016;1\u201038."},{"key":"e_1_2_7_4_1","unstructured":"Konecn\u00fdJ. Stochastic distributed and federated optimization for machine learning.CoRR.2017;1\u2010178."},{"key":"e_1_2_7_5_1","first-page":"1273","volume-title":"Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017, Fort Lauderdale, USA","author":"McMahan B","year":"2017"},{"key":"e_1_2_7_6_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-63076-8_1"},{"key":"e_1_2_7_7_1","doi-asserted-by":"publisher","DOI":"10.1109\/TVT.2021.3055767"},{"key":"e_1_2_7_8_1","first-page":"1126","volume-title":"Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia","author":"Finn C","year":"2017"},{"key":"e_1_2_7_9_1","unstructured":"SchmidhuberJ.Evolutionary Principles in Self\u2010Referential Learning or on Learning How to Learn: the Meta\u2010meta\u2010\u2026Hook. Ph.D. Thesis Technische Universit\u00e4t M\u00fcnchen;1987."},{"key":"e_1_2_7_10_1","first-page":"9537","volume-title":"Annual Conference on Neural Information Processing Systems,\u00a0Montr\u00e9al, Canada","author":"Finn C","year":"2018"},{"key":"e_1_2_7_11_1","unstructured":"ChenF LuoM DongZ LiZ HeX. Federated meta\u2010learning with fast convergence and efficient communication. CoRR.2018;1\u201014.http:\/\/arxiv.org\/abs\/1802.07876"},{"key":"e_1_2_7_12_1","unstructured":"HospedalesTM AntoniouA MicaelliP StorkeyAJ. Meta\u2010learning in neural networks: A Survey.CoRR.2020;1\u201020."},{"key":"e_1_2_7_13_1","first-page":"1920","volume-title":"Proceedings of the 36th International Conference on Machine Learning, Long Beach, California, USA. Proceedings of Machine Learning Research","author":"Finn C","year":"2019"},{"key":"e_1_2_7_14_1","unstructured":"FungC YoonCJM BeschastnikhI. Mitigating Sybils in federated learning poisoning.CoRR.2018;1\u201016."},{"key":"e_1_2_7_15_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2909068"},{"key":"e_1_2_7_16_1","first-page":"634","volume-title":"Proceedings of the 36th International Conference on Machine Learning, ICML, Long Beach, California, USA. Proceedings of Machine Learning Research","author":"Bhagoji AN","year":"2019"},{"key":"e_1_2_7_17_1","first-page":"2938","volume-title":"The 23rd International Conference on Artificial Intelligence and Statistics\u00a0Online [Palermo, Sicily, Italy]","author":"Bagdasaryan E","year":"2020"},{"key":"e_1_2_7_18_1","first-page":"119","volume-title":"Annual Conference on Neural Information Processing Systems 2017,\u00a0Long Beach,\u00a0CA, USA","author":"Blanchard P","year":"2017"},{"key":"e_1_2_7_19_1","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2019.2940820"},{"key":"e_1_2_7_20_1","doi-asserted-by":"publisher","DOI":"10.23919\/IFIPNetworking52078.2021.9472790"},{"key":"e_1_2_7_21_1","unstructured":"HuC JiangJ WangZ.Decentralized federated learning: a segmented gossip approach.CoRR.2019;1\u20107."},{"key":"e_1_2_7_22_1","unstructured":"RoyAG SiddiquiS P\u00f6lsterlS NavabN WachingerC.BrainTorrent: a peer\u2010to\u2010peer environment for decentralized federated learning.CoRR.2019;1\u20109."},{"key":"e_1_2_7_23_1","doi-asserted-by":"publisher","DOI":"10.1109\/MNET.011.2000263"},{"issue":"11","key":"e_1_2_7_24_1","first-page":"2675","article-title":"Reputation\u2010aware hedonic coalition formation for efficient serverless hierarchical federated learning","volume":"33","author":"Ng JS","year":"2021","journal-title":"IEEE Trans Parallel Distrib Syst"},{"key":"e_1_2_7_25_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPDS.2021.3096076"},{"key":"e_1_2_7_26_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2020.09.064"},{"key":"e_1_2_7_27_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2021.01.046"},{"key":"e_1_2_7_28_1","doi-asserted-by":"publisher","DOI":"10.1002\/int.22727"},{"key":"e_1_2_7_29_1","doi-asserted-by":"publisher","DOI":"10.3390\/molecules26226959"},{"key":"e_1_2_7_30_1","unstructured":"SmithV ChiangC SanjabiM TalwalkarAS.Federated multi\u2010task learning. In:\u00a0GuyonI Von LuxburgU BengioS WallachH FergusR VishwanathanS GarnettR eds.Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017 December 4\u20139 2017 Long Beach CA USA. Curran Associates Inc.;2017:4424\u20104434."},{"key":"e_1_2_7_31_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPDS.2021.3098467"},{"key":"e_1_2_7_32_1","doi-asserted-by":"publisher","DOI":"10.1109\/BigData47090.2019.9006060"},{"key":"e_1_2_7_33_1","unstructured":"CorinziaL BuhmannJM. Variational federated multi\u2010task learning.CoRR.2019;1\u201012."},{"key":"e_1_2_7_34_1","unstructured":"DinhCT VuTT TranNH DaoMN ZhangH. FedU: a unified framework for federated multi\u2010task learning with Laplacian regularization.CoRR.2021;1\u201023."},{"key":"e_1_2_7_35_1","unstructured":"HeC CeyaniE BalasubramanianK AnnavaramM AvestimehrS.SpreadGNN: serverless multi\u2010task federated learning for graph neural networks.CoRR.2021;1\u201023."},{"key":"e_1_2_7_36_1","unstructured":"JiangY Konecn\u00fdJ RushK KannanS.Improving federated learning personalization via model agnostic meta learning.CoRR.2019;1\u201011."},{"key":"e_1_2_7_37_1","doi-asserted-by":"crossref","unstructured":"LinS YangL HeZ FanD ZhangJ. MetaGater: Fast Learning of Conditional Channel Gated Networks via federated meta\u2010learningIEEE 18th International Conference on Mobile Ad Hoc and Smart Systems MASS 2021 October 4\u20107 2021 Denver CO USA IEEE;2021:164\u2010172.","DOI":"10.1109\/MASS52906.2021.00031"},{"key":"e_1_2_7_38_1","unstructured":"FallahA MokhtariA OzdaglarAE. Personalized federated learning with theoretical guarantees: A model\u2010agnostic meta\u2010learning approach. In:LarochelleH RanzatoM HadsellR BalcanMF LinH eds.Advances in NeuralInformation Processing Systems. Vol. 33. Curran Associates Inc.;2020:3557\u20103568."},{"key":"e_1_2_7_39_1","doi-asserted-by":"crossref","unstructured":"YueS RenJ XinJ ZhangD ZhangY ZhuangW.Efficient federated meta\u2010learning over multi\u2010access wireless networks.IEEE J Sel Areas Commun.2022;40(5):1556\u20101570.","DOI":"10.1109\/JSAC.2022.3143259"},{"key":"e_1_2_7_40_1","doi-asserted-by":"crossref","unstructured":"AramoonO ChenP QuG TianY.Meta federated learning.CoRR.2021;1\u201011.","DOI":"10.1007\/978-981-16-4963-9_2"},{"key":"e_1_2_7_41_1","doi-asserted-by":"publisher","DOI":"10.1145\/3133956.3133982"},{"key":"e_1_2_7_42_1","doi-asserted-by":"publisher","DOI":"10.1145\/571637.571640"},{"key":"e_1_2_7_43_1","unstructured":"BlanchardP MhamdiEME GuerraouiR StainerJ.Byzantine\u2010tolerant machine learning.CoRR.2017;1\u201016."},{"key":"e_1_2_7_44_1","doi-asserted-by":"publisher","DOI":"10.1145\/3219617.3219655"},{"key":"e_1_2_7_45_1","unstructured":"LiY YuM LiS AvestimehrS KimNS SchwingAG.Pipe\u2010SGD: a decentralized pipelined SGD framework for distributed deep net training. In:\u00a0BengioS WallachH LarochelleH GraumanK Cesa\u2010BianchiN GarnettR eds.Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018 NeurIPS 2018 December 3\u20138 2018 Montr\u00e9al Canada. Curran Associates Inc.;2018:8056\u20108067."},{"key":"e_1_2_7_46_1","doi-asserted-by":"publisher","DOI":"10.1145\/3442381.3449851"},{"key":"e_1_2_7_47_1","unstructured":"VinyalsO BlundellC LillicrapT KavukcuogluK WierstraD.Matching networks for one shot learning. In:\u00a0LeeD SugiyamaM LuxburgU GuyonI GarnettR eds.Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016 December 5\u201310 2016 Barcelona Spain. Curran Associates Inc.;2016:3630\u20103638."},{"key":"e_1_2_7_48_1","doi-asserted-by":"crossref","unstructured":"ChenC GolubchikL PaolieriM. Backdoor attacks on federated meta\u2010learning.CoRR.2020;1\u201013.","DOI":"10.1145\/3523062"},{"key":"e_1_2_7_49_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"e_1_2_7_50_1","doi-asserted-by":"publisher","DOI":"10.1109\/SPAWC48557.2020.9154277"},{"key":"e_1_2_7_51_1","unstructured":"CaoT Truong\u2010HuuT TranHD TranK.A federated learning framework for privacy\u2010preserving and parallel training.CoRR.2020;1\u201015."},{"key":"e_1_2_7_52_1","unstructured":"XuX LyuL.Towards building a robust and fair federated learning system.CoRR.2020;1\u201012."}],"container-title":["International Journal of Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/int.22951","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/full-xml\/10.1002\/int.22951","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/int.22951","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,2,9]],"date-time":"2023-02-09T15:32:41Z","timestamp":1675956761000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1002\/int.22951"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,7,7]]},"references-count":51,"journal-issue":{"issue":"11","published-print":{"date-parts":[[2022,11]]}},"alternative-id":["10.1002\/int.22951"],"URL":"https:\/\/doi.org\/10.1002\/int.22951","archive":["Portico"],"relation":{},"ISSN":["0884-8173","1098-111X"],"issn-type":[{"type":"print","value":"0884-8173"},{"type":"electronic","value":"1098-111X"}],"subject":[],"published":{"date-parts":[[2022,7,7]]},"assertion":[{"value":"2021-11-03","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2022-06-23","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2022-07-07","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}