{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,7]],"date-time":"2024-09-07T08:37:30Z","timestamp":1725698250100},"reference-count":55,"publisher":"Hindawi Limited","issue":"9","license":[{"start":{"date-parts":[[2022,1,6]],"date-time":"2022-01-06T00:00:00Z","timestamp":1641427200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"},{"start":{"date-parts":[[2022,1,6]],"date-time":"2022-01-06T00:00:00Z","timestamp":1641427200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/doi.wiley.com\/10.1002\/tdm_license_1.1"}],"content-domain":{"domain":["onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["Int J of Intelligent Sys"],"published-print":{"date-parts":[[2022,9]]},"DOI":"10.1002\/int.22805","type":"journal-article","created":{"date-parts":[[2022,1,6]],"date-time":"2022-01-06T08:01:06Z","timestamp":1641456066000},"page":"5643-5671","update-policy":"http:\/\/dx.doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["A multiturn complementary generative framework for conversational emotion recognition"],"prefix":"10.1155","volume":"37","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-4745-757X","authenticated-orcid":false,"given":"Lifang","family":"Wang","sequence":"first","affiliation":[{"name":"School of Computer Science and Engineering Northwestern Polytechnical University Xi'an Shaanxi China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1890-7845","authenticated-orcid":false,"given":"Ronghan","family":"Li","sequence":"additional","affiliation":[{"name":"School of Computer Science and Engineering Northwestern Polytechnical University Xi'an Shaanxi China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6277-3418","authenticated-orcid":false,"given":"Yuxin","family":"Wu","sequence":"additional","affiliation":[{"name":"School of Software Northwestern Polytechnical University Xi'an Shaanxi China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6651-0826","authenticated-orcid":false,"given":"Zejun","family":"Jiang","sequence":"additional","affiliation":[{"name":"School of Computer Science and Engineering Northwestern Polytechnical University Xi'an Shaanxi China"}]}],"member":"98","published-online":{"date-parts":[[2022,1,6]]},"reference":[{"key":"e_1_2_12_2_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10579-008-9076-6"},{"key":"e_1_2_12_3_1","doi-asserted-by":"crossref","unstructured":"PoriaS HazarikaD MajumderN NaikG CambriaE MihalceaR.MELD: a multimodal multi\u2010party dataset for emotion recognition in conversations. In: Korhonen A Traum DR M\u00e1rquez L eds. Association for Computational Linguistics;2019:527\u2010536.doi:10.18653\/v1\/p19-1050","DOI":"10.18653\/v1\/P19-1050"},{"key":"e_1_2_12_4_1","doi-asserted-by":"crossref","unstructured":"HazarikaD PoriaS ZadehA CambriaE MorencyL ZimmermannR.Conversational memory network for emotion recognition in dyadic dialogue videos. In: Walker MA Ji H Stent A eds. Association for Computational Linguistics;2018:2122\u20102132.doi:10.18653\/v1\/n18-1193","DOI":"10.18653\/v1\/N18-1193"},{"key":"e_1_2_12_5_1","doi-asserted-by":"crossref","unstructured":"ZhongP WangD MiaoC.Knowledge\u2010enriched transformer for emotion detection in textual conversations. In: Inui K Jiang J Ng V Wan X eds. Association for Computational Linguistics;2019:165\u2010176.doi:10.18653\/v1\/D19-1016","DOI":"10.18653\/v1\/D19-1016"},{"key":"e_1_2_12_6_1","doi-asserted-by":"crossref","unstructured":"ZhangD WuL SunC LiS ZhuQ ZhouG.Modeling both context\u2010 and speaker\u2010sensitive dependence for emotion detection in multi\u2010speaker conversations. In: Kraus S ed. ijcai.org;2019:5415\u20105421.doi:10.24963\/ijcai.2019\/752","DOI":"10.24963\/ijcai.2019\/752"},{"key":"e_1_2_12_7_1","doi-asserted-by":"crossref","unstructured":"JiaoW YangH KingI LyuMR.HiGRU: hierarchical gated recurrent units for utterance\u2010level emotion recognition. In: Burstein J Doran C Solorio T eds. Association for Computational Linguistics;2019:397\u2010406.doi:10.18653\/v1\/n19-1037","DOI":"10.18653\/v1\/N19-1037"},{"key":"e_1_2_12_8_1","doi-asserted-by":"crossref","unstructured":"MajumderN PoriaS HazarikaD MihalceaR GelbukhAF CambriaE.DialogueRNN: an attentive RNN for emotion detection in conversations. AAAI Press;2019:6818\u20106825.doi:10.1609\/aaai.v33i01.33016818","DOI":"10.1609\/aaai.v33i01.33016818"},{"key":"e_1_2_12_9_1","doi-asserted-by":"crossref","unstructured":"JiaoW LyuMR KingI.Real\u2010time emotion recognition via attention gated hierarchical memory network. AAAI Press;2020:8002\u20108009.https:\/\/aaai.org\/ojs\/index.php\/AAAI\/article\/view\/6309","DOI":"10.1609\/aaai.v34i05.6309"},{"key":"e_1_2_12_10_1","doi-asserted-by":"crossref","unstructured":"GhosalD MajumderN PoriaS ChhayaN GelbukhAF.DialogueGCN: a graph convolutional neural network for emotion recognition in conversation. In: Inui K Jiang J Ng V Wan X eds. Association for Computational Linguistics;2019:154\u2010164.doi:10.18653\/v1\/D19-1015","DOI":"10.18653\/v1\/D19-1015"},{"key":"e_1_2_12_11_1","doi-asserted-by":"publisher","DOI":"10.1002\/9781118325001"},{"key":"e_1_2_12_12_1","first-page":"35","volume-title":"Dialoganalyse VI\/1: Referate der 6. Arbeitstagung, Prag 1996","author":"Weigand E","year":"2017"},{"key":"e_1_2_12_13_1","doi-asserted-by":"crossref","unstructured":"SerbanIV SordoniA BengioY CourvilleAC PineauJ.Building end\u2010To\u2010end dialogue systems using generative hierarchical neural network models. In: Schuurmans D Wellman MP eds. AAAI Press;2016:3776\u20103784.http:\/\/www.aaai.org\/ocs\/index.php\/AAAI\/AAAI16\/paper\/view\/11957","DOI":"10.1609\/aaai.v30i1.9883"},{"key":"e_1_2_12_14_1","unstructured":"ZhangZ LiJ ZhuP ZhaoH LiuG.Hierarchical recurrent attention network for response generation. In: McIlraith SA Weinberger KQ eds. AAAI Press;2018:3740\u20103752.https:\/\/www.aclweb.org\/anthology\/C18-1317\/"},{"key":"e_1_2_12_15_1","unstructured":"XingC WuY WuW HuangY ZhouM. In:AAAI;2018:5610\u20105617.https:\/\/www.aaai.org\/ocs\/index.php\/AAAI\/AAAI18\/paper\/view\/16510"},{"key":"e_1_2_12_16_1","doi-asserted-by":"crossref","unstructured":"ZhangH LanY PangL GuoJ ChengX.ReCoSa: detecting the relevant contexts with self\u2010attention for multi\u2010turn dialogue generation. In: Korhonen A Traum DR M\u00e1rquez L eds. Association for Computational Linguistics;2019:3721\u20103730.doi:10.18653\/v1\/p19-1362","DOI":"10.18653\/v1\/P19-1362"},{"key":"e_1_2_12_17_1","doi-asserted-by":"crossref","unstructured":"LianR XieM WangF PengJ WuH.Learning to select knowledge for response generation in dialog systems. In: Kraus S ed. ijcai.org;2019:5081\u20105087.doi:10.24963\/ijcai.2019\/706","DOI":"10.24963\/ijcai.2019\/706"},{"key":"e_1_2_12_18_1","doi-asserted-by":"crossref","unstructured":"SunY HuY XingL YuJ XieY.History\u2010adaption knowledge incorporation mechanism for multi\u2010turn dialogue system. AAAI Press;2020:8944\u20108951.https:\/\/aaai.org\/ojs\/index.php\/AAAI\/article\/view\/6425","DOI":"10.1609\/aaai.v34i05.6425"},{"key":"e_1_2_12_19_1","doi-asserted-by":"crossref","unstructured":"SongJ ZhangK ZhouX WuJ.HKA: a hierarchical knowledge attention mechanism for multi\u2010turn dialogue system. IEEE;2020:3512\u20103516.doi:10.1109\/ICASSP40776.2020.9054125","DOI":"10.1109\/ICASSP40776.2020.9054125"},{"key":"e_1_2_12_20_1","unstructured":"LiY SuH ShenX LiW CaoZ NiuS.DailyDialog: a manually labelled multi\u2010turn dialogue dataset. In: Kondrak G Watanabe T eds. Asian Federation of Natural Language Processing;2017:986\u2010995.https:\/\/www.aclweb.org\/anthology\/I17-1099\/"},{"key":"e_1_2_12_21_1","doi-asserted-by":"crossref","unstructured":"HazarikaD PoriaS MihalceaR CambriaE ZimmermannR.Interactive conversational memory network for multimodal emotion detection. In: Riloff E Chiang D Hockenmaier J Tsujii J eds. Association for Computational Linguistics;2018:2594\u20102604.doi:10.18653\/v1\/d18-1280","DOI":"10.18653\/v1\/D18-1280"},{"key":"e_1_2_12_22_1","unstructured":"ChungJ G\u00fcl\u00e7ehre\u00c7 ChoK BengioY. Empirical evaluation of gated recurrent neural networks on sequence modeling.CoRR.2014:abs\/1412.3555."},{"key":"e_1_2_12_23_1","doi-asserted-by":"crossref","unstructured":"LianZ TaoJ LiuB HuangJ.Conversational emotion analysis via attention mechanisms. In: Kubin G Kacic Z eds. ISCA;2019:1936\u20101940.doi:10.21437\/Interspeech.2019-1577","DOI":"10.21437\/Interspeech.2019-1577"},{"key":"e_1_2_12_24_1","first-page":"374","volume-title":"CCL Lecture Notes in Computer Science","author":"Jiang T","year":"2020"},{"key":"e_1_2_12_25_1","doi-asserted-by":"crossref","unstructured":"HuD WeiL HuaiX.DialogueCRN: contextual reasoning networks for emotion recognition in conversations. In: Zong C Xia F Li W Navigli R eds. Association for Computational Linguistics;2021:7042\u20107052.doi:10.18653\/v1\/2021.acl-long.547","DOI":"10.18653\/v1\/2021.acl-long.547"},{"key":"e_1_2_12_26_1","doi-asserted-by":"crossref","unstructured":"ShengD WangD ShenY ZhengH LiuH.Summarize before aggregate: a global\u2010to\u2010local heterogeneous graph inference network for conversational emotion recognition. In: Scott D Bel Zong C eds. International Committee on Computational Linguistics;2020:4153\u20104163.doi:10.18653\/v1\/2020.coling-main.367","DOI":"10.18653\/v1\/2020.coling-main.367"},{"key":"e_1_2_12_27_1","doi-asserted-by":"crossref","unstructured":"ShenW WuS YangY QuanX.Directed acyclic graph network for conversational emotion recognition. In: Zong C Xia F Li W Navigli R eds. Association for Computational Linguistics;2021:1551\u20101560.doi:10.18653\/v1\/2021.acl-long.123","DOI":"10.18653\/v1\/2021.acl-long.123"},{"key":"e_1_2_12_28_1","doi-asserted-by":"crossref","unstructured":"ShenW ChenJ QuanX XieZ.DialogXL: all\u2010in\u2010one XLNet for multi\u2010party conversation emotion recognition. AAAI Press;2021:13789\u201013797.https:\/\/ojs.aaai.org\/index.php\/AAAI\/article\/view\/17625","DOI":"10.1609\/aaai.v35i15.17625"},{"key":"e_1_2_12_29_1","doi-asserted-by":"crossref","unstructured":"LiQ GkoumasD SordoniA NieJ\u2010N MelucciM.Quantum\u2010inspired neural network for conversational emotion recognition. AAAI Press;2021:13270\u201013278.https:\/\/ojs.aaai.org\/index.php\/AAAI\/article\/view\/17567","DOI":"10.1609\/aaai.v35i15.17567"},{"key":"e_1_2_12_30_1","doi-asserted-by":"crossref","unstructured":"ZhangD ChenX XuS XuB.Knowledge aware emotion recognition in textual conversations via multi\u2010task incremental transformer. In: Scott D Bel N Zong C eds. International Committee on Computational Linguistics;2020:4429\u20104440.doi:10.18653\/v1\/2020.coling-main.392","DOI":"10.18653\/v1\/2020.coling-main.392"},{"key":"e_1_2_12_31_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.inffus.2020.06.005"},{"key":"e_1_2_12_32_1","doi-asserted-by":"crossref","unstructured":"LiJ JiD LiF ZhangM LiuY.Conversational transfer learning for emotion recognition. International Committee on Computational Linguistics;2020:4190\u20104200.doi:10.18653\/v1\/2020.coling-main.370","DOI":"10.18653\/v1\/2020.coling-main.370"},{"key":"e_1_2_12_33_1","unstructured":"SerbanIV KlingerT TesauroG et al.Multiresolution recurrent neural networks: an application to dialogue response generation. In: Singh SP Markovitch S eds. AAAI Press;2017:3288\u20103294.http:\/\/aaai.org\/ocs\/index.php\/AAAI\/AAAI17\/paper\/view\/14571"},{"key":"e_1_2_12_34_1","unstructured":"SerbanIV SordoniA LoweR et al.A hierarchical latent variable encoder\u2010decoder model for generating dialogues. In: Singh SP Markovitch S eds. AAAI Press;2017:3295\u20103301.http:\/\/aaai.org\/ocs\/index.php\/AAAI\/AAAI17\/paper\/view\/14567"},{"key":"e_1_2_12_35_1","doi-asserted-by":"crossref","unstructured":"ChenH RenZ TangJ ZhaoYE YinD.Hierarchical variational memory network for dialogue generation. In: Champin P Gandon F Lalmas M Ipeirotis PG eds. ACM;2018:1653\u20101662.doi:10.1145\/3178876.3186077","DOI":"10.1145\/3178876.3186077"},{"key":"e_1_2_12_36_1","doi-asserted-by":"crossref","unstructured":"ZhaoY XuC WuW.Learning a simple and effective model for multi\u2010turn response generation with auxiliary tasks. In: Webber B Cohn T He Y Liu Y eds. Association for Computational Linguistics;2020:3472\u20103483.doi:10.18653\/v1\/2020.emnlp-main.279","DOI":"10.18653\/v1\/2020.emnlp-main.279"},{"key":"e_1_2_12_37_1","unstructured":"VaswaniA ShazeerN ParmarN et al.Attention is all you need. In: Guyon I von Luxburg U Bengio S Wallach HM Fergus R Vishwanathan SVN Garnett R eds. MIT Press;2017:5998\u20106008.https:\/\/proceedings.neurips.cc\/paper\/2017\/hash\/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html"},{"key":"e_1_2_12_38_1","doi-asserted-by":"crossref","unstructured":"ZhouH HuangM ZhangT ZhuX LiuB.Emotional chatting machine: emotional conversation generation with internal and external memory. In: McIlraith SA Weinberger KQ eds. AAAI Press;2018:730\u2010739.https:\/\/www.AAAI.org\/ocs\/index.php\/AAAI\/AAAI18\/paper\/view\/16455","DOI":"10.1609\/aaai.v32i1.11325"},{"key":"e_1_2_12_39_1","unstructured":"ZhouX WangWY.MojiTalk: generating emotional responses at scale. In: Gurevych I Miyao Y eds. Association for Computational Linguistics;2018:1128\u20101137.https:\/\/www.aclweb.org\/anthology\/P18-1104\/"},{"key":"e_1_2_12_40_1","doi-asserted-by":"crossref","unstructured":"SongZ ZhengX LiuL XuM HuangX.Generating responses with a specific emotion in dialog. In: Korhonen A Traum DR M\u00e1rquez L eds. Association for Computational Linguistics;2019:3685\u20103695.doi:10.18653\/v1\/p19-1359","DOI":"10.18653\/v1\/P19-1359"},{"key":"e_1_2_12_41_1","doi-asserted-by":"crossref","unstructured":"RashkinH SmithEM LiM BoureauY\u2010L.Towards empathetic open\u2010domain conversation models: a new benchmark and dataset. In: Korhonen A Traum DR M\u00e1rquez L eds. Association for Computational Linguistics;2019:5370\u20105381.doi:10.18653\/v1\/p19-1534","DOI":"10.18653\/v1\/P19-1534"},{"key":"e_1_2_12_42_1","doi-asserted-by":"crossref","unstructured":"LiS FengS WangD SongK ZhangY WangW.EmoElicitor: an open domain response generation model with user emotional reaction awareness. In: Bessiere C ed. ijcai.org;2020:3637\u20103643.doi:10.24963\/ijcai.2020\/503","DOI":"10.24963\/ijcai.2020\/503"},{"key":"e_1_2_12_43_1","unstructured":"ZandieR MahoorMH. EmpTransfo: a multi\u2010head transformer architecture for creating empathetic dialog systems. In: Bart R Bell E eds.Proceedings of the Thirty\u2010Third International Florida Artificial Intelligence Research Society Conference Originally to be held in North Miami Beach Florida USA May 17\u201020 2020.AAAI Press;2020:276\u2010281.https:\/\/aaai.org\/ocs\/index.php\/FLAIRS\/FLAIRS20\/paper\/view\/18446"},{"key":"e_1_2_12_44_1","doi-asserted-by":"crossref","unstructured":"PenningtonJ SocherR ManningCD.Glove: global vectors for word representation. In: Moschitti A Pang B Daelemans W eds. Association for Computational Linguistics;2014:1532\u20101543.doi:10.3115\/v1\/d14-1162","DOI":"10.3115\/v1\/D14-1162"},{"key":"e_1_2_12_45_1","unstructured":"VijayakumarAK CogswellM SelvarajuRR et al. Diverse beam search: decoding diverse solutions from neural sequence models.CoRR.2016:abs\/1610.02424."},{"key":"e_1_2_12_46_1","doi-asserted-by":"publisher","DOI":"10.1080\/02699939208411068"},{"key":"e_1_2_12_47_1","doi-asserted-by":"publisher","DOI":"10.1177\/001316447303300309"},{"key":"e_1_2_12_48_1","doi-asserted-by":"crossref","unstructured":"PoriaS CambriaE HazarikaD MajumderN ZadehA MorencyL\u2010P.Dependent sentiment analysis in user\u2010generated videos. In: Barzilay R Kan M eds. Association for Computational Linguistics;2017:873\u2010883.doi:10.18653\/v1\/P17-1081","DOI":"10.18653\/v1\/P17-1081"},{"key":"e_1_2_12_49_1","doi-asserted-by":"crossref","unstructured":"ZhangD ZhangW LiS ZhuQ ZhouG.Modeling both intra\u2010 and inter\u2010modal influence for real\u2010time emotion detection in conversations. In: Chen CW Cucchiara R Hua XS Qi GJ Ricci E Zhang Z Zimmermann R eds. ACM;2020:503\u2010511.doi:10.1145\/3394171.3413949","DOI":"10.1145\/3394171.3413949"},{"key":"e_1_2_12_50_1","unstructured":"KimJ KoH SongS JangS HongJ. Contextual augmentation of pretrained language models for emotion recognition in conversations. In:Proceedings of the Third Workshop on Computational Modeling of People's Opinions Personality and Emotion's in Social Media. Association for Computational Linguistics;2020:64\u201073."},{"key":"e_1_2_12_51_1","unstructured":"MaoY SunQ LiuG et al. DialogueTRM: exploring the intra\u2010 and inter\u2010modal emotional behaviors in the conversation.CoRR.2020:abs\/2010.07637."},{"key":"e_1_2_12_52_1","doi-asserted-by":"crossref","unstructured":"LuX ZhaoY WuY TianY ChenH QinB.An iterative emotion interaction network for emotion recognition in conversations. In: Scott D Bel N Zong C eds. International Committee on Computational Linguistics;2020:4078\u20104088.doi:10.18653\/v1\/2020.coling-main.360","DOI":"10.18653\/v1\/2020.coling-main.360"},{"key":"e_1_2_12_53_1","unstructured":"SutskeverI VinyalsO LeQV.An iterative emotion interaction network for emotion recognition in conversations. In: Scott D Bel N Zong C eds. International Committee on Computational Linguistics;2014:3104\u20103112.https:\/\/proceedings.neurips.cc\/paper\/2014\/hash\/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html"},{"key":"e_1_2_12_54_1","unstructured":"KingmaDP BaJ.Adam: a method for stochastic optimization. In: Bengio Y LeCun Y eds. OpenReview.net;2015.http:\/\/arxiv.org\/abs\/1412.6980"},{"key":"e_1_2_12_55_1","doi-asserted-by":"crossref","unstructured":"DevlinJ ChangM\u2010W LeeK ToutanovaK.BERT: pre\u2010training of deep bidirectional transformers for language understanding. In: Burstein J Doran C Solorio T eds. Association for Computational Linguistics;2019:4171\u20104186.doi:10.18653\/v1\/n19-1423","DOI":"10.18653\/v1\/N19-1423"},{"key":"e_1_2_12_56_1","doi-asserted-by":"crossref","unstructured":"EybenF W\u00f6llmerM SchullerBW.Opensmile: the munich versatile and fast open\u2010source audio feature extractor. In: Del Bimbo A Chang SF Smeulders AWM eds.Proceedings of the 18th International Conference on Multimedia 2010 Firenze Italy October 25\u201029 2010; ACM;2010:1459\u20101462.doi:10.1145\/1873951.1874246","DOI":"10.1145\/1873951.1874246"}],"container-title":["International Journal of Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/int.22805","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/full-xml\/10.1002\/int.22805","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/int.22805","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,2,9]],"date-time":"2023-02-09T15:34:20Z","timestamp":1675956860000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1002\/int.22805"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,1,6]]},"references-count":55,"journal-issue":{"issue":"9","published-print":{"date-parts":[[2022,9]]}},"alternative-id":["10.1002\/int.22805"],"URL":"https:\/\/doi.org\/10.1002\/int.22805","archive":["Portico"],"relation":{},"ISSN":["0884-8173","1098-111X"],"issn-type":[{"value":"0884-8173","type":"print"},{"value":"1098-111X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,1,6]]},"assertion":[{"value":"2021-06-22","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2021-11-25","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2022-01-06","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}