{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,26]],"date-time":"2025-04-26T02:48:57Z","timestamp":1745635737544},"reference-count":76,"publisher":"Hindawi Limited","issue":"3","license":[{"start":{"date-parts":[[2021,12,6]],"date-time":"2021-12-06T00:00:00Z","timestamp":1638748800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"},{"start":{"date-parts":[[2021,12,6]],"date-time":"2021-12-06T00:00:00Z","timestamp":1638748800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/doi.wiley.com\/10.1002\/tdm_license_1.1"}],"content-domain":{"domain":["onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["Int J of Intelligent Sys"],"published-print":{"date-parts":[[2022,3]]},"DOI":"10.1002\/int.22777","type":"journal-article","created":{"date-parts":[[2021,12,7]],"date-time":"2021-12-07T07:57:08Z","timestamp":1638863828000},"page":"2371-2392","update-policy":"http:\/\/dx.doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":36,"title":["A comprehensive review of federated learning for COVID\u201019 detection"],"prefix":"10.1155","volume":"37","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0267-8371","authenticated-orcid":false,"given":"Sadaf","family":"Naz","sequence":"first","affiliation":[{"name":"Department of Computer Science and Information Technology, School of Engineering and Mathematical Sciences La Trobe University Bundoora Victoria Australia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0471-9402","authenticated-orcid":false,"given":"Khoa T.","family":"Phan","sequence":"additional","affiliation":[{"name":"Department of Computer Science and Information Technology, School of Engineering and Mathematical Sciences La Trobe University Bundoora Victoria Australia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4122-3767","authenticated-orcid":false,"given":"Yi\u2010Ping Phoebe","family":"Chen","sequence":"additional","affiliation":[{"name":"Department of Computer Science and Information Technology, School of Engineering and Mathematical Sciences La Trobe University Bundoora Victoria Australia"}]}],"member":"98","published-online":{"date-parts":[[2021,12,6]]},"reference":[{"key":"e_1_2_8_2_1","first-page":"1","article-title":"How artificial intelligence and machine learning can help healthcare systems respond to COVID\u201019","volume":"110","author":"Schaar M","year":"2020","journal-title":"Int J Mach Learn Cybern"},{"key":"e_1_2_8_3_1","doi-asserted-by":"publisher","DOI":"10.1561\/2200000083"},{"key":"e_1_2_8_4_1","doi-asserted-by":"publisher","DOI":"10.2196\/medinform.7744"},{"key":"e_1_2_8_5_1","first-page":"59","article-title":"Federated learning of predictive models from federated Electronic Health Records","volume":"112","author":"Brisimi TS","year":"2018","journal-title":"Int J Bio\u2010Med Comput."},{"key":"e_1_2_8_6_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-32692-0_16"},{"key":"e_1_2_8_7_1","doi-asserted-by":"publisher","DOI":"10.1145\/3298981"},{"key":"e_1_2_8_8_1","first-page":"17","volume-title":"Deep leakage from gradients","author":"Zhu L","year":"2020"},{"key":"e_1_2_8_9_1","doi-asserted-by":"crossref","unstructured":"MelisL SongC De CristofaroE ShmatikovV. Exploiting unintended feature leakage in collaborative learning. In:Conference Proceedings of 2019 IEEE Symposium on Security and Privacy (SP) San Francisco CA;2019:691\u2010706.","DOI":"10.1109\/SP.2019.00029"},{"key":"e_1_2_8_10_1","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2017.2787987"},{"key":"e_1_2_8_11_1","unstructured":"AgarwalN SureshAT FelixXY KumarS McMahanB. cpSGD: Communication\u2010efficient and differentially\u2010private distributed SGD. In:Conference Proceedings of 32nd Conference on NeurIPS Montr\u00e9al Canada;2018:7575\u20107586."},{"key":"e_1_2_8_12_1","unstructured":"McMahanHB RamageD TalwarK ZhangL. Learning differentially private recurrent language models. In:Conference Proceedings of 6th International Conference on Learning Representations Vancouver BC Canada;2018."},{"key":"e_1_2_8_13_1","unstructured":"MahloujifarS MahmoodyM MohammedA. Data poisoning attacks in multi\u2010party learning. In: Kamalika C Ruslan S eds.Proceedings of the 36th International Conference on Machine Learning California 2019:4274\u20104283."},{"key":"e_1_2_8_14_1","unstructured":"BhagojiAN ChakrabortyS MittalP CaloS. Analyzing federated learning through an adversarial lens. In:Proceedings of the 36th International Conference on Machine Learning California;2019:634\u2010643."},{"key":"e_1_2_8_15_1","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2021.3108434"},{"key":"e_1_2_8_16_1","doi-asserted-by":"publisher","DOI":"10.3390\/fi13030073"},{"key":"e_1_2_8_17_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.hcc.2021.100002"},{"key":"e_1_2_8_18_1","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2020.3023126"},{"key":"e_1_2_8_19_1","unstructured":"PanX ZhangM WuD XiaoQ JiS YangZ Justinian'sGA. Avernor: robust distributed learning with gradient aggregation agent. In:Conference Proceedings of 29th USENIX Security Symposium Boston USA; 2020:1641\u20101658."},{"key":"e_1_2_8_20_1","unstructured":"BagdasaryanE VeitA HuaY EstrinD ShmatikovV. How to backdoor federated learning. In:Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics. Palermo Sicily Italy;2020:2938\u20102948."},{"key":"e_1_2_8_21_1","unstructured":"BiggioB NelsonB LaskovP. Support vector machines under adversarial label noise. In:Conference Proceedings of The 3rd Asian Conference on Machine Learning Taoyuan Taiwan;2011:97\u2010112."},{"key":"e_1_2_8_22_1","doi-asserted-by":"crossref","unstructured":"BarrenoM NelsonB SearsR JosephAD TygarJD. Can machine learning be secure? In:Conference Proceedings of the 2006 ACM Symposium on Information computer and communications security Taipei Taiwan 2006:16\u201025.","DOI":"10.1145\/1128817.1128824"},{"key":"e_1_2_8_23_1","doi-asserted-by":"crossref","unstructured":"YanB WangJ ChengJ et al. Experiments of federated learning for COVID\u201019 chest X\u2010ray images. In:International Conference on Artificial Intelligence and Security (ICAIS) Dublin Ireland;2021:41\u201053.","DOI":"10.1007\/978-3-030-78618-2_4"},{"key":"e_1_2_8_24_1","doi-asserted-by":"publisher","DOI":"10.1109\/JSEN.2021.3076767"},{"issue":"14","key":"e_1_2_8_25_1","first-page":"16301","article-title":"Dynamic fusion\u2010based federated learning for COVID\u201019 detection","volume":"21","author":"Zhang W","year":"2021","journal-title":"IEEE Internet Things J"},{"key":"e_1_2_8_26_1","doi-asserted-by":"publisher","DOI":"10.1007\/s41666-020-00082-4"},{"key":"e_1_2_8_27_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.imu.2020.100378"},{"key":"e_1_2_8_28_1","doi-asserted-by":"publisher","DOI":"10.1109\/JSEN.2020.3004568"},{"key":"e_1_2_8_29_1","doi-asserted-by":"publisher","DOI":"10.1056\/NEJMoa2001316"},{"key":"e_1_2_8_30_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cmpb.2020.105608"},{"issue":"2","key":"e_1_2_8_31_1","first-page":"1","article-title":"COVID\u201019 detection in chest X\u2010ray images using a deep learning approach","volume":"6","author":"F\u00e1tima S","year":"2020","journal-title":"Int J Interact."},{"key":"e_1_2_8_32_1","doi-asserted-by":"publisher","DOI":"10.3390\/v12070769"},{"key":"e_1_2_8_33_1","first-page":"1","article-title":"Using X\u2010ray images and deep learning for automated detection of coronavirus disease","author":"El Asnaoui K","year":"2020","journal-title":"J Biomol Struct Dyn"},{"key":"e_1_2_8_34_1","doi-asserted-by":"publisher","DOI":"10.3348\/kjr.2020.0536"},{"key":"e_1_2_8_35_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.chaos.2020.110122"},{"key":"e_1_2_8_36_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2020.3003810"},{"key":"e_1_2_8_37_1","doi-asserted-by":"publisher","DOI":"10.1093\/cid\/ciaa310"},{"key":"e_1_2_8_38_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2020.09.041"},{"key":"e_1_2_8_39_1","doi-asserted-by":"publisher","DOI":"10.1093\/jamia\/ocy017"},{"key":"e_1_2_8_40_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2017.11.018"},{"key":"e_1_2_8_41_1","doi-asserted-by":"crossref","unstructured":"AbadiM ChuA GoodfellowI et al. Deep learning with differential privacy. In:Conference Proceedings 2016 ACM SIGSAC Conference on Computer and Communications Security Vienna Austria;2016:308\u2010318.","DOI":"10.1145\/2976749.2978318"},{"key":"e_1_2_8_42_1","first-page":"1310","volume-title":"Conference Proceedings 22nd ACM SIGSAC Conference on Computer and Communications Security","author":"Shokri R","year":"2015"},{"key":"e_1_2_8_43_1","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2019.2945367"},{"key":"e_1_2_8_44_1","doi-asserted-by":"crossref","unstructured":"PappasC ChatzopoulosD LalisS VavalisM. IPLS: a framework for decentralized federated learning. In:2021 IFIP Networking Conference Espoo and Helsinki Finland;2021:1\u20106.","DOI":"10.23919\/IFIPNetworking52078.2021.9472790"},{"key":"e_1_2_8_45_1","doi-asserted-by":"publisher","DOI":"10.1038\/s41746-020-00323-1"},{"key":"e_1_2_8_46_1","unstructured":"BonawitzK EichnerH GrieskampW et al. Towards federated learning at scale: system design. In:Conference Proceedings of 2nd SysML Conference California 2019:Online."},{"key":"e_1_2_8_47_1","doi-asserted-by":"publisher","DOI":"10.3390\/ijerph17155596"},{"key":"e_1_2_8_48_1","doi-asserted-by":"publisher","DOI":"10.1001\/jamainternmed.2018.7117"},{"key":"e_1_2_8_49_1","doi-asserted-by":"publisher","DOI":"10.1038\/s42256-019-0051-2"},{"key":"e_1_2_8_50_1","doi-asserted-by":"publisher","DOI":"10.1038\/s41591-018-0107-6"},{"issue":"1","key":"e_1_2_8_51_1","first-page":"1","article-title":"A systematic review of barriers to data sharing in public health","volume":"14","author":"Panhuis W","year":"2014","journal-title":"BMC Public Health"},{"issue":"1","key":"e_1_2_8_52_1","first-page":"1","article-title":"Estimating the success of re\u2010identifications in incomplete datasets using generative models","volume":"10","author":"Luc R","year":"2019","journal-title":"Nat Commun"},{"key":"e_1_2_8_53_1","doi-asserted-by":"publisher","DOI":"10.1056\/NEJMc1908881"},{"issue":"10","key":"e_1_2_8_54_1","first-page":"3042","article-title":"ANHIR: automatic non\u2010rigid histological image registration challenge","volume":"39","author":"Borovec J","year":"2020","journal-title":"IEEE (T\u2010MI)"},{"issue":"10","key":"e_1_2_8_55_1","first-page":"1993","article-title":"The multimodal brain tumor image segmentation benchmark (BRATS)","volume":"34","author":"Menze BH","year":"2015","journal-title":"IEEE (T\u2010MI)"},{"key":"e_1_2_8_56_1","doi-asserted-by":"publisher","DOI":"10.1109\/TCC.2016.2617382"},{"issue":"2","key":"e_1_2_8_57_1","first-page":"e7744","article-title":"Privacy\u2010preserving patient similarity learning in a federated environment: development and analysis","volume":"6","author":"Eysenbach G","year":"2018","journal-title":"JMIR Med Inf"},{"key":"e_1_2_8_58_1","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0255397"},{"key":"e_1_2_8_59_1","doi-asserted-by":"publisher","DOI":"10.1109\/BDCloud.2018.00164"},{"key":"e_1_2_8_60_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2020.101765"},{"key":"e_1_2_8_61_1","unstructured":"RothH ChangK SinghP et al. Federated learning for breast density classification: a real\u2010world implementation. In:Domain Adaptation and Representation Transfer and Distributed and Collaborative Learning. Springer;2020:181\u2010191."},{"key":"e_1_2_8_62_1","doi-asserted-by":"publisher","DOI":"10.1109\/TWC.2020.2974748"},{"issue":"99","key":"e_1_2_8_63_1","first-page":"911","article-title":"VerifyNet: secure and verifiable federated learning","volume":"15","author":"Xu G","year":"2019","journal-title":"IEEE Trans Inf Foren Sec."},{"issue":"4","key":"e_1_2_8_64_1","first-page":"2529","article-title":"DP\u2010FL: a novel differentially private federated learning framework for the unbalanced data","volume":"23","author":"Huang X","year":"2020","journal-title":"W3J"},{"key":"e_1_2_8_65_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2019.2944481"},{"key":"e_1_2_8_66_1","doi-asserted-by":"publisher","DOI":"10.1109\/TWC.2020.3008091"},{"key":"e_1_2_8_67_1","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2020.2991401"},{"key":"e_1_2_8_68_1","first-page":"14774","volume-title":"Conference Proceedings of 33rd Conference on Neural Information Processing Systems","author":"Zhu L","year":"2019"},{"key":"e_1_2_8_69_1","doi-asserted-by":"crossref","unstructured":"LiT SahuAK ZaheerM SanjabiM TalwalkarA SmithyV. FedDANE: a federated newton\u2010type method. In:Conference Proceedings of 53rd Asilomar Conference on Signal Systems and Computers Pacific Grove CA;2019:1227\u20101231.","DOI":"10.1109\/IEEECONF44664.2019.9049023"},{"key":"e_1_2_8_70_1","unstructured":"GhorbaniA ZouJ. Data shapley: equitable valuation of data for machine learning. In:Conference Proceedings of 36th International Conference on Machine Learning Long Beach CA;2019:2242\u20102251."},{"key":"e_1_2_8_71_1","doi-asserted-by":"crossref","unstructured":"NasrM ShokriR HoumansadrA. Comprehensive privacy analysis of deep learning: passive and active white\u2010box inference attacks against centralized and federated learning. In:Conference Proceedings IEEE Symposium on SP San Francisco CA;2019:739\u2010753.","DOI":"10.1109\/SP.2019.00065"},{"key":"e_1_2_8_72_1","doi-asserted-by":"crossref","unstructured":"KulkarniV KulkarniM PantA. Survey of personalization techniques for federated learning. In:Conference Proceedings of Fourth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4) London UK;2020:794\u2010797.","DOI":"10.1109\/WorldS450073.2020.9210355"},{"key":"e_1_2_8_73_1","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1007\/978-3-030-63076-8_1","volume-title":"Threats to federated learning","author":"Lyu L","year":"2020"},{"key":"e_1_2_8_74_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cie.2020.106854"},{"key":"e_1_2_8_75_1","doi-asserted-by":"publisher","DOI":"10.1002\/int.22504"},{"key":"e_1_2_8_76_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.fertnstert.2020.09.160"},{"key":"e_1_2_8_77_1","doi-asserted-by":"publisher","DOI":"10.1109\/COMST.2020.2986024"}],"container-title":["International Journal of Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/int.22777","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/full-xml\/10.1002\/int.22777","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/int.22777","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,2,9]],"date-time":"2023-02-09T15:33:48Z","timestamp":1675956828000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1002\/int.22777"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,12,6]]},"references-count":76,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2022,3]]}},"alternative-id":["10.1002\/int.22777"],"URL":"https:\/\/doi.org\/10.1002\/int.22777","archive":["Portico"],"relation":{},"ISSN":["0884-8173","1098-111X"],"issn-type":[{"value":"0884-8173","type":"print"},{"value":"1098-111X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,12,6]]},"assertion":[{"value":"2021-07-17","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2021-11-16","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2021-12-06","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}