{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,11]],"date-time":"2025-04-11T09:28:51Z","timestamp":1744363731055},"reference-count":59,"publisher":"Hindawi Limited","issue":"1","license":[{"start":{"date-parts":[[2021,9,10]],"date-time":"2021-09-10T00:00:00Z","timestamp":1631232000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"},{"start":{"date-parts":[[2021,9,10]],"date-time":"2021-09-10T00:00:00Z","timestamp":1631232000000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/doi.wiley.com\/10.1002\/tdm_license_1.1"}],"content-domain":{"domain":["onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["Int J Intell Syst"],"published-print":{"date-parts":[[2022,1]]},"DOI":"10.1002\/int.22651","type":"journal-article","created":{"date-parts":[[2021,9,10]],"date-time":"2021-09-10T07:16:31Z","timestamp":1631258191000},"page":"914-943","update-policy":"http:\/\/dx.doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Deep node ranking for neuro\u2010symbolic structural node embedding and classification"],"prefix":"10.1155","volume":"37","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-9916-8756","authenticated-orcid":false,"given":"Bla\u017e","family":"\u0160krlj","sequence":"first","affiliation":[{"name":"Jo\u017eef Stefan Institute Ljubljana Slovenia"},{"name":"Jo\u017eef Stefan International Postgraduate School Ljubljana Slovenia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5770-9139","authenticated-orcid":false,"given":"Jan","family":"Kralj","sequence":"additional","affiliation":[{"name":"Jo\u017eef Stefan Institute Ljubljana Slovenia"},{"name":"Cosylab d.o.o. Ljubljana Slovenia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0160-3375","authenticated-orcid":false,"given":"Janez","family":"Konc","sequence":"additional","affiliation":[{"name":"National Institute of Chemistry Ljubljana Slovenia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1232-3320","authenticated-orcid":false,"given":"Marko","family":"Robnik\u2010\u0160ikonja","sequence":"additional","affiliation":[{"name":"Faculty of Computer and Information Science Ljubljana Slovenia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9995-7093","authenticated-orcid":false,"given":"Nada","family":"Lavra\u010d","sequence":"additional","affiliation":[{"name":"Jo\u017eef Stefan Institute Ljubljana Slovenia"},{"name":"University of Nova Gorica Ajdov\u0161\u010dina Slovenia"}]}],"member":"98","published-online":{"date-parts":[[2021,9,10]]},"reference":[{"key":"e_1_2_11_2_1","doi-asserted-by":"publisher","DOI":"10.1126\/science.aad9029"},{"key":"e_1_2_11_3_1","doi-asserted-by":"crossref","unstructured":"GroverA LeskovecJ. node2vec: Scalable feature learning for networks. In: Krishnapuram B Shah M Smola AJ Aggarwal CC Shen D Rastogi R eds.Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining August 13\u201317 2016. ACM; 2016:855\u2010864.https:\/\/doi.org\/10.1145\/2939672.2939754","DOI":"10.1145\/2939672.2939754"},{"key":"e_1_2_11_4_1","doi-asserted-by":"publisher","DOI":"10.1093\/bioinformatics\/btx252"},{"key":"e_1_2_11_5_1","doi-asserted-by":"crossref","unstructured":"RibeiroLF SaveresePH FigueiredoDR.struc2vec.\u00a0Learning node representations from structural identity. In:Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD '17 Association for Computing Machinery;2017:385\u2010394.https:\/\/doi.org\/10.1145\/3097983.3098061","DOI":"10.1145\/3097983.3098061"},{"key":"e_1_2_11_6_1","doi-asserted-by":"crossref","unstructured":"PerozziB Al\u2010RfouR SkienaS. Deepwalk: online learning of social representations. In: Macskassy SA Perlich C Leskovec J Wang W Ghani R eds.\u00a0The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD'14 August 24\u201327 2014. ACM; 2014:701\u2010710.\u00a0https:\/\/doi.org\/10.1145\/2623330.2623732","DOI":"10.1145\/2623330.2623732"},{"key":"e_1_2_11_7_1","unstructured":"d'Avila GarcezA LambLC. Neurosymbolic AI: the 3rd wave; 2020.https:\/\/arxiv.org\/abs\/2012.05876"},{"key":"e_1_2_11_8_1","unstructured":"MaoJ GanC KohliP TenenbaumJB WuJ. The neuro\u2010symbolic concept learner: Interpreting scenes words and sentences from natural supervision. In:7th International Conference on Learning Representations ICLR 2019 New Orleans LA May 6\u20139 2019 OpenReview.net;2019.https:\/\/openreview.net\/forum?id=rJgMlhRctm"},{"key":"e_1_2_11_9_1","unstructured":"LiQ HuangS HongY ChenY WuYN ZhuS. Closed loop neural\u2010symbolic learning via integrating neural perception grammar parsing and symbolic reasoning. In:Proceedings of the 37th International Conference on Machine Learning ICML 2020 July 13\u201318 2020 Virtual Event Vol. 119 of Proceedings of Machine Learning Research PMLR;2020:5884\u20105894.http:\/\/proceedings.mlr.press\/v119\/li20f.html"},{"key":"e_1_2_11_10_1","unstructured":"AmizadehS PalangiH PolozovA HuangY KoishidaK. Neuro\u2010symbolic visual reasoning: Disentangling \u201cvisual\u201d from \u201creasoning\u201d. In:Proceedings of the 37th International Conference on Machine Learning ICML 2020 July 13\u201018 2020 Virtual Event Vol. 119 of Proceedings of Machine Learning Research PMLR;2020:279\u2010290.http:\/\/proceedings.mlr.press\/v119\/amizadeh20a.html"},{"key":"e_1_2_11_11_1","unstructured":"DongH MaoJ LinT WangC LiL ZhouD. Neural logic machines. In:7th International Conference on Learning Representations ICLR 2019 New Orleans LA May 6\u20139 2019 OpenReview.net;2019.https:\/\/openreview.net\/forum?id=B1xY-hRctX"},{"key":"e_1_2_11_12_1","doi-asserted-by":"crossref","unstructured":"LodhiH. Deep relational machines. In:Proceedings Part II of the 20th International Conference on Neural Information Processing\u2014Volume 8227 ICONIP 2013 Springer\u2010Verlag Berlin Heidelberg;2013:212\u2010219.https:\/\/doi.org\/10.1007\/978-3-642-42042-9_27","DOI":"10.1007\/978-3-642-42042-9_27"},{"issue":"130","key":"e_1_2_11_13_1","first-page":"1","article-title":"Logical explanations for deep relational machines using relevance information","volume":"20","author":"Srinivasan A","year":"2019","journal-title":"J Mach Learn Res"},{"key":"e_1_2_11_14_1","unstructured":"ManhaeveR DumancicS KimmigA DemeesterT RaedtLD. Deepproblog: neural probabilistic logic programming. In: Bengio S Wallach HM Larochelle H Grauman K Cesa\u2010Bianchi N Garnett R eds.Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018 NeurIPS 2018 December 3\u20138 2018 Montr\u00e9al Canada; 2018:3753\u20103763.https:\/\/proceedings.neurips.cc\/paper\/2018\/hash\/dc5d637ed5e62c36ecb73b654b05ba2a-Abstract.html"},{"key":"e_1_2_11_15_1","doi-asserted-by":"crossref","unstructured":"RaedtLD DumancicS ManhaeveR MarraG. From statistical relational to neuro\u2010symbolic artificial intelligence. In: Bessiere C ed.Proceedings of the Twenty\u2010Ninth International Joint Conference on Artificial Intelligence IJCAI 2020; 2020:4943\u20104950.https:\/\/doi.org\/10.24963\/ijcai.2020\/688","DOI":"10.24963\/ijcai.2020\/688"},{"key":"e_1_2_11_16_1","unstructured":"WintersT MarraG ManhaeveR RaedtLD. Deepstochlog: neural stochastic logic programming.2021.https:\/\/arxiv.org\/abs\/2106.12574"},{"key":"e_1_2_11_17_1","doi-asserted-by":"publisher","DOI":"10.1109\/MCS.2015.2495000"},{"key":"e_1_2_11_18_1","doi-asserted-by":"publisher","DOI":"10.1186\/s13015-015-0044-6"},{"key":"e_1_2_11_19_1","doi-asserted-by":"publisher","DOI":"10.1080\/00018730601170527"},{"key":"e_1_2_11_20_1","unstructured":"Van Der HofstadR. Random graphs and complex networks;2016.https:\/\/www.cambridge.org\/core\/books\/random-graphs-and-complex-networks\/AA6578462E56868A874B083E082C9FE7"},{"key":"e_1_2_11_21_1","unstructured":"ZhuX GhahramaniZ. Learning from labeled and unlabeled data with label propagation. Technical Report;2002."},{"key":"e_1_2_11_22_1","article-title":"A survey on network embedding","author":"Cui P","journal-title":"IEEE Trans Knowl Data Engineering"},{"key":"e_1_2_11_23_1","unstructured":"KipfTN WellingM. Semi\u2010supervised classification with graph convolutional networks. In:5th International Conference on Learning Representations ICLR 2017 Toulon France April 24\u201026 2017 Conference Track Proceedings OpenReview.net;2017.https:\/\/openreview.net\/forum?id=SJU4ayYgl"},{"key":"e_1_2_11_24_1","unstructured":"VelickovicP CucurullG CasanovaA RomeroA Li\u00f2P BengioY. Graph attention networks. In:6th International Conference on Learning Representations ICLR 2018 Vancouver BC Canada April 30\u2013May 3 2018 Conference Track Proceedings OpenReview.net;2018.https:\/\/openreview.net\/forum?id=rJXMpikCZ"},{"key":"e_1_2_11_25_1","unstructured":"XuK HuW LeskovecJ JegelkaS. How powerful are graph neural networks? In:7th International Conference on Learning Representations ICLR 2019 New Orleans LA May 6\u20139 2019 OpenReview.net;2019.https:\/\/openreview.net\/forum?id=ryGs6iA5Km"},{"key":"e_1_2_11_26_1","unstructured":"HamiltonWL YingZ LeskovecJ. Inductive representation learning on large graphs. In: Guyon I von Luxburg U Bengio S Wallach HM Fergus R Vishwanathan SVN Garnett R eds.Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017 December 4\u20139 2017; 2017:1024\u20101034.https:\/\/proceedings.neurips.cc\/paper\/2017\/hash\/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html"},{"key":"e_1_2_11_27_1","doi-asserted-by":"crossref","unstructured":"TangJ QuM WangM ZhangM YanJ MeiQ. LINE: large\u2010scale information network embedding. In: Gangemi A Leonardi S Panconesi A eds.Proceedings of the 24th International Conference on World Wide Web WWW 2015 Florence Italy May 18\u201322 2015. ACM; 2015:1067\u20101077.https:\/\/doi.org\/10.1145\/2736277.2741093","DOI":"10.1145\/2736277.2741093"},{"key":"e_1_2_11_28_1","doi-asserted-by":"crossref","unstructured":"QiuJ DongY MaH LiJ WangK TangJ. Network embedding as matrix factorization: Unifying deepwalk line pte and node2vec. In: Chang Y Zhai C Liu Y Maarek Y eds.Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining WSDM 2018 Marina Del Rey CA February 5\u20109 2018. ACM; 2018:459\u2010467.https:\/\/doi.org\/10.1145\/3159652.3159706","DOI":"10.1145\/3159652.3159706"},{"key":"e_1_2_11_29_1","unstructured":"GoyalP FerraraE. Graph embedding techniques applications and performance: a survey arXiv preprint.https:\/\/www.sciencedirect.com\/science\/article\/abs\/pii\/S0950705118301540"},{"key":"e_1_2_11_30_1","unstructured":"PageL BrinS MotwaniR WinogradT. The PageRank citation ranking: Bringing order to the web. Technical Report Stanford InfoLab;1999."},{"key":"e_1_2_11_31_1","doi-asserted-by":"crossref","unstructured":"TongH FaloutsosC PanJ\u2010Y. Fast random walk with restart and its applications. In:Proceedings of the Sixth International Conference on Data Mining;2006:613\u2010622.","DOI":"10.1109\/ICDM.2006.70"},{"key":"e_1_2_11_32_1","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0078293"},{"key":"e_1_2_11_33_1","doi-asserted-by":"publisher","DOI":"10.1504\/IJCBDD.2017.083878"},{"key":"e_1_2_11_34_1","doi-asserted-by":"crossref","unstructured":"LofgrenP BanerjeeS GoelA. Personalized pagerank estimation and search: A bidirectional approach. In: Bennett PN Josifovski V Neville J Radlinski F eds.Proceedings of the Ninth ACM International Conference on Web Search and Data Mining San Francisco CA February 22\u201325 2016. ACM; 2016:163\u2010172.https:\/\/doi.org\/10.1145\/2835776.2835823","DOI":"10.1145\/2835776.2835823"},{"key":"e_1_2_11_35_1","first-page":"1","article-title":"HINMINE: heterogeneous information network mining with information retrieval heuristics","author":"Kralj J","year":"2017","journal-title":"J Intell Inform Syst"},{"key":"e_1_2_11_36_1","unstructured":"KlicperaJ BojchevskiA G\u00fcnnemannS. Predict then propagate: Graph neural networks meet personalized pagerank. In:7th International Conference on Learning Representations ICLR 2019 New Orleans LA May 6\u20139 2019 OpenRevew.net;https:\/\/openreview.net\/forum?id=H1gL-2A9Ym"},{"key":"e_1_2_11_37_1","unstructured":"BojchevskiA KlicperaJ PerozziB BlaisM KapoorA LukasikM G\u00fcnnemannS. Is pagerank all you need for scalable graph neural networks? In:ACM KDD MLG Workshop;2019."},{"key":"e_1_2_11_38_1","unstructured":"XuK LiC TianY SonobeT KawarabayashiK JegelkaS. Representation learning on graphs with jumping knowledge networks. In: Dy JG Krause A eds.Proceedings of the 35th International Conference on Machine Learning ICML 2018 Stockholmsm\u00e4ssan Stockholm Sweden July 10\u201315 2018 Vol. 80 of Proceedings of Machine Learning Research. PMLR; 2018:5449\u20105458.https:\/\/proceedings.mlr.press\/v80\/xu18c.html"},{"key":"e_1_2_11_39_1","unstructured":"PageL BrinS MotwaniR WinogradT. The PageRank citation ranking: Bringing order to the web Technical Report Stanford InfoLab;1999."},{"key":"e_1_2_11_40_1","doi-asserted-by":"crossref","unstructured":"ReimersN GurevychI. Sentence\u2010bert: Sentence embeddings using siamese bert\u2010networks. In:Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing Association for Computational Linguistics; 2019.https:\/\/arxiv.org\/abs\/1908.10084","DOI":"10.18653\/v1\/D19-1410"},{"issue":"1","key":"e_1_2_11_41_1","first-page":"D698","article-title":"The biogrid interaction database: 2011 update","volume":"39","author":"Stark C","year":"2010","journal-title":"Nucleic Acids Res"},{"key":"e_1_2_11_42_1","unstructured":"MahoneyM. Large text compression benchmark.http:\/\/mattmahoney.net\/dc\/text.html"},{"key":"e_1_2_11_43_1","unstructured":"ZafaraniR LiuH. Social computing data repository at ASU;2019.http:\/\/socialcomputing.asu.edu"},{"key":"e_1_2_11_44_1","doi-asserted-by":"publisher","DOI":"10.1093\/nar\/gkj109"},{"key":"e_1_2_11_45_1","unstructured":"LuQ GetoorL. Link\u2010based classification. In: Fawcett T Mishra N eds. Machine Learning Proceedings of the Twentieth International Conference (ICML 2003) August 21\u201024 2003. AAAI Press: Washington DC; 2003:496\u2010503.http:\/\/www.aaai.org\/Library\/ICML\/2003\/icml03-066.php"},{"key":"e_1_2_11_46_1","unstructured":"PeiH WeiB ChangKC LeiY YangB. Geom\u2010gcn: Geometric graph convolutional networks. In:8th International Conference on Learning Representations ICLR 2020 Addis Ababa Ethiopia April 26\u201330 2020 OpenReview.net;2020.https:\/\/openreview.net\/forum?id=S1e2agrFvS"},{"key":"e_1_2_11_47_1","doi-asserted-by":"crossref","unstructured":"KumarS SpezzanoF SubrahmanianV FaloutsosC. Edge weight prediction in weighted signed networks. In:2016 IEEE 16th International Conference on Data Mining (ICDM) IEEE;2016:221\u2010230.","DOI":"10.1109\/ICDM.2016.0033"},{"key":"e_1_2_11_48_1","article-title":"Insights from ion binding site network analysis into evolution and functions of proteins","author":"\u0160krlj B","journal-title":"Mol Inform"},{"key":"e_1_2_11_49_1","doi-asserted-by":"publisher","DOI":"10.1093\/nar\/gku460"},{"key":"e_1_2_11_50_1","doi-asserted-by":"publisher","DOI":"10.1002\/jcc.23048"},{"key":"e_1_2_11_51_1","doi-asserted-by":"publisher","DOI":"10.1093\/nar\/gkx420"},{"key":"e_1_2_11_52_1","doi-asserted-by":"crossref","unstructured":"QiuJ DongY MaH LiJ WangK TangJ. Network embedding as matrix factorization: Unifying deepwalk line pte and node2vec. In: Chang Y Zhai C Liu Y Maarek Y eds.Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining WSDM 2018 Marina Del Rey CA February 5\u20139 2018. ACM; 2018:459\u2010467.https:\/\/doi.org\/10.1145\/3159652.3159706","DOI":"10.1145\/3159652.3159706"},{"key":"e_1_2_11_53_1","first-page":"1","article-title":"Statistical comparisons of classifiers over multiple data sets","volume":"7","author":"Dem\u0161ar J","year":"2006","journal-title":"J Mach Learn Res"},{"issue":"1","key":"e_1_2_11_54_1","first-page":"2653","article-title":"Time for a change: a tutorial for comparing multiple classifiers through bayesian analysis","volume":"18","author":"Benavoli A","year":"2017","journal-title":"J Mach Learn Res"},{"key":"e_1_2_11_55_1","doi-asserted-by":"publisher","DOI":"10.1038\/s41592-019-0686-2"},{"key":"e_1_2_11_56_1","unstructured":"PaszkeA GrossS MassaF et al. Pytorch: an imperative style high\u2010performance deep learning library. In: Wallach HM Larochelle H Beygelzimer A d'Alch\u00e9\u2010Buc F Fox EB Garnett R eds.Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019 NeurIPS 2019 December 8\u201314 2019. Vancouver BC Canada; 2019: 8024\u20108035.https:\/\/proceedings.neurips.cc\/paper\/2019\/hash\/bdbca288fee7f92f2bfa9f7012727740-Abstract.html"},{"key":"e_1_2_11_57_1","unstructured":"ZhuX GhahramaniZ. Learning from labeled and unlabeled data with label propagation.http:\/\/citeseerx.ist.psu.edu\/viewdoc\/summary?doi=10.1.1.13.8280"},{"key":"e_1_2_11_58_1","doi-asserted-by":"crossref","unstructured":"DonnatC ZitnikM HallacD LeskovecJ. Learning structural node embeddings via diffusion wavelets. In: Guo Y Farooq F eds.Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining KDD 2018 London UK August 19\u201323 2018. ACM; 2018: 1320\u20101329.https:\/\/doi.org\/10.1145\/3219819.3220025","DOI":"10.1145\/3219819.3220025"},{"key":"e_1_2_11_59_1","unstructured":"FeyM LenssenJE. Fast graph representation learning with PyTorch geometric. In:ICLR Workshop on Representation Learning on Graphs and Manifolds;2019.https:\/\/arxiv.org\/abs\/1903.02428"},{"key":"e_1_2_11_60_1","unstructured":"McInnesL HealyJ MelvilleJ. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint.https:\/\/joss.theoj.org\/papers\/10.21105\/joss.00861"}],"container-title":["International Journal of Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/int.22651","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/full-xml\/10.1002\/int.22651","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/int.22651","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,2,9]],"date-time":"2023-02-09T15:38:12Z","timestamp":1675957092000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1002\/int.22651"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9,10]]},"references-count":59,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2022,1]]}},"alternative-id":["10.1002\/int.22651"],"URL":"https:\/\/doi.org\/10.1002\/int.22651","archive":["Portico"],"relation":{},"ISSN":["0884-8173","1098-111X"],"issn-type":[{"value":"0884-8173","type":"print"},{"value":"1098-111X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,9,10]]},"assertion":[{"value":"2020-10-16","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2021-08-21","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2021-09-10","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}