{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,2,13]],"date-time":"2024-02-13T11:46:05Z","timestamp":1707824765957},"reference-count":72,"publisher":"Wiley","issue":"21","license":[{"start":{"date-parts":[[2022,5,28]],"date-time":"2022-05-28T00:00:00Z","timestamp":1653696000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62162046"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["Concurrency and Computation"],"published-print":{"date-parts":[[2022,9,25]]},"abstract":"Abstract<\/jats:title>Cloud computing services are ubiquitous in society and cloud recommender systems play a crucial role in intelligently selecting services for cloud users. Currently, recommendations are static with low scalability. Only one recommendation list is generated at a time and the recommender strategy in the recommendation cycle is not adjustable. This paper presents a new elastic recommender process (ERP) for cloud users. A Markov model is used to characterize the dynamic relationship between different user states. The ERP generates an elastic recommendation that can be used to dynamically adjust the recommender strategy to meet the user's needs based on their browsing records in the current service cycle without the recommender system's involvement. Experimental results show that the ERP improves the effectiveness of the recommender thus increasing the accuracy and diversity of its recommendations.<\/jats:p>","DOI":"10.1002\/cpe.7066","type":"journal-article","created":{"date-parts":[[2022,5,28]],"date-time":"2022-05-28T10:41:00Z","timestamp":1653734460000},"update-policy":"http:\/\/dx.doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["An elastic recommender process for cloud service recommendation scalability"],"prefix":"10.1002","volume":"34","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-6764-8205","authenticated-orcid":false,"given":"Rui\u2010dong","family":"Qi","sequence":"first","affiliation":[{"name":"College of Computer Science Inner Mongolia University Hohhot Inner Mongolia China"}]},{"given":"Jian\u2010tao","family":"Zhou","sequence":"additional","affiliation":[{"name":"College of Computer Science Inner Mongolia University Hohhot Inner Mongolia China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6479-5154","authenticated-orcid":false,"given":"Zhuowei","family":"Wang","sequence":"additional","affiliation":[{"name":"School of Computers Guangdong University of Technology Guangdong China"}]},{"given":"Xiaoyu","family":"Song","sequence":"additional","affiliation":[{"name":"Department of Electrical and Computer Engineering Portland State University Portland Oregon USA"}]}],"member":"311","published-online":{"date-parts":[[2022,5,28]]},"reference":[{"key":"e_1_2_10_2_1","doi-asserted-by":"crossref","unstructured":"MellPM GranceT.SP 800\u2010145. The NIST definition of cloud computing; 2011.","DOI":"10.6028\/NIST.SP.800-145"},{"key":"e_1_2_10_3_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11761-019-00263-z"},{"key":"e_1_2_10_4_1","doi-asserted-by":"publisher","DOI":"10.1109\/TSC.2015.2474386"},{"key":"e_1_2_10_5_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jpdc.2020.03.019"},{"key":"e_1_2_10_6_1","doi-asserted-by":"publisher","DOI":"10.3390\/app8081368"},{"key":"e_1_2_10_7_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11761-017-0224-y"},{"key":"e_1_2_10_8_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.future.2019.12.027"},{"key":"e_1_2_10_9_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jss.2018.09.069"},{"key":"e_1_2_10_10_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.future.2017.05.042"},{"key":"e_1_2_10_11_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.future.2020.01.035"},{"key":"e_1_2_10_12_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPDS.2020.2981306"},{"key":"e_1_2_10_13_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.future.2018.07.062"},{"key":"e_1_2_10_14_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11265-018-1407-2"},{"key":"e_1_2_10_15_1","doi-asserted-by":"publisher","DOI":"10.1007\/s13369-017-2975-3"},{"key":"e_1_2_10_16_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPDS.2018.2877363"},{"key":"e_1_2_10_17_1","volume-title":"Recommender Systems Handbook","author":"Ricci F","year":"2010"},{"key":"e_1_2_10_18_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jnca.2016.10.009"},{"key":"e_1_2_10_19_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2020.113347"},{"key":"e_1_2_10_20_1","doi-asserted-by":"crossref","unstructured":"JeunenO VerstrepenK GoethalsB.Efficient similarity computation for collaborative filtering in dynamic environments. Proceedings of the 13th ACM Conference on Recommender Systems; 2019:251\u2010259.","DOI":"10.1145\/3298689.3347017"},{"key":"e_1_2_10_21_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2962315"},{"key":"e_1_2_10_22_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11257-019-09231-w"},{"key":"e_1_2_10_23_1","doi-asserted-by":"crossref","unstructured":"SamantaP LiuX.Recommending services for new mashups through service factors and top\u2010k neighbors. Proceedings of the IEEE. 2017 IEEE International Conference on Web Services (ICWS); 2017:381\u2010388.","DOI":"10.1109\/ICWS.2017.128"},{"key":"e_1_2_10_24_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPDS.2017.2700796"},{"key":"e_1_2_10_25_1","doi-asserted-by":"publisher","DOI":"10.3233\/IDA-163209"},{"key":"e_1_2_10_26_1","doi-asserted-by":"publisher","DOI":"10.1007\/s00607-019-00784-7"},{"key":"e_1_2_10_27_1","doi-asserted-by":"publisher","DOI":"10.1145\/3285029"},{"issue":"9","key":"e_1_2_10_28_1","article-title":"APPLET: a privacy\u2010preserving framework for location\u2010aware recommender system","volume":"60","author":"Xindi MA","year":"2017","journal-title":"Sci China"},{"key":"e_1_2_10_29_1","article-title":"Multi\u2010objective optimization based ranking prediction for cloud service recommendation","volume":"101","author":"Shuai D","year":"2017","journal-title":"Decis Support Syst"},{"key":"e_1_2_10_30_1","doi-asserted-by":"publisher","DOI":"10.26599\/TST.2019.9010032"},{"issue":"2","key":"e_1_2_10_31_1","first-page":"1","article-title":"CloudRec: a framework for personalized service recommendation in the cloud","volume":"43","author":"Qi Y","year":"2014","journal-title":"Knowl Inf Syst"},{"issue":"9","key":"e_1_2_10_32_1","article-title":"A recommendation system for cloud services selection based on intelligent agents","volume":"11","author":"Mahmood A","year":"2018","journal-title":"Ind J Sci Technol"},{"key":"e_1_2_10_33_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2018.2817245"},{"key":"e_1_2_10_34_1","doi-asserted-by":"crossref","unstructured":"DjirounR GuesssoumMA BoukhalfaK BenkhelifaE.A novel cloud services recommendation system based on automatic learning techniques. Proceedings of the 2017 IEEE\/ACS 14th International Conference on Computer Systems and Applications (AICCSA); 2018:598\u2010605.","DOI":"10.1109\/AICCSA.2017.216"},{"key":"e_1_2_10_35_1","doi-asserted-by":"publisher","DOI":"10.1109\/TSC.2014.2346492"},{"key":"e_1_2_10_36_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2016.2514368"},{"key":"e_1_2_10_37_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11036-020-01535-1"},{"key":"e_1_2_10_38_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11280\u2010021\u201000956\u20106"},{"key":"e_1_2_10_39_1","doi-asserted-by":"publisher","DOI":"10.4018\/IJCINI.2020100103"},{"key":"e_1_2_10_40_1","doi-asserted-by":"publisher","DOI":"10.1109\/TCC.2016.2628375"},{"key":"e_1_2_10_41_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2017.2695657"},{"key":"e_1_2_10_42_1","doi-asserted-by":"publisher","DOI":"10.1007\/s00521-017-2858-2"},{"key":"e_1_2_10_43_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2019.02.032"},{"key":"e_1_2_10_44_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jss.2020.110902"},{"key":"e_1_2_10_45_1","doi-asserted-by":"publisher","DOI":"10.3390\/app10041257"},{"key":"e_1_2_10_46_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jnca.2014.07.019"},{"key":"e_1_2_10_47_1","doi-asserted-by":"crossref","unstructured":"ChangC LiuP WuJ.Probability\u2010based cloud storage providers selection algorithms with maximum availability. Proceedings of the 2012 41st International Conference on Parallel Processing; 2012:199\u2010208.","DOI":"10.1109\/ICPP.2012.51"},{"key":"e_1_2_10_48_1","doi-asserted-by":"publisher","DOI":"10.1002\/cpe.3080"},{"key":"e_1_2_10_49_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2020.05.067"},{"key":"e_1_2_10_50_1","doi-asserted-by":"publisher","DOI":"10.1002\/sta4.363"},{"key":"e_1_2_10_51_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2019.11.028"},{"key":"e_1_2_10_52_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2020.113648"},{"key":"e_1_2_10_53_1","unstructured":"MoskalenkoO ParraD Saez\u2010TrumperD.Scalable recommendation of wikipedia articles to editors using representation learning; 2020. arXiv preprint arXiv:2009.11771."},{"key":"e_1_2_10_54_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2021.08.110"},{"issue":"3","key":"e_1_2_10_55_1","first-page":"1","article-title":"Adaptive deep modeling of users and items using side information for recommendation","volume":"31","author":"Han J","year":"2019","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"key":"e_1_2_10_56_1","doi-asserted-by":"publisher","DOI":"10.26599\/BDMA.2021.9020002"},{"key":"e_1_2_10_57_1","doi-asserted-by":"publisher","DOI":"10.26599\/TST.2020.9010025"},{"key":"e_1_2_10_58_1","doi-asserted-by":"crossref","unstructured":"TangW YanZ.CloudRec: a mobile cloud service recommender system based on adaptive QoS management. TRUSTCOM '15; 2015:9\u201016; IEEE Computer Society.","DOI":"10.1109\/Trustcom.2015.351"},{"key":"e_1_2_10_59_1","doi-asserted-by":"publisher","DOI":"10.1109\/TSC.2016.2592903"},{"key":"e_1_2_10_60_1","doi-asserted-by":"publisher","DOI":"10.1109\/TSC.2015.2485988"},{"key":"e_1_2_10_61_1","doi-asserted-by":"publisher","DOI":"10.1109\/TSC.2014.2381496"},{"key":"e_1_2_10_62_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2018.2875144"},{"key":"e_1_2_10_63_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2019.2907430"},{"key":"e_1_2_10_64_1","first-page":"1","article-title":"Diversified and scalable service recommendation with accuracy guarantee","author":"Wang L","year":"2020","journal-title":"IEEE Trans Comput Soc Syst"},{"key":"e_1_2_10_65_1","doi-asserted-by":"publisher","DOI":"10.26599\/BDMA.2020.9020026"},{"key":"e_1_2_10_66_1","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2021.3133614"},{"key":"e_1_2_10_67_1","doi-asserted-by":"crossref","unstructured":"QiR ZhouJ SongX.An effective clustering method for finding density peaks. Proceedings of the 2018 IEEE International Conference on Parallel Distributed Processing with Applications (ISPA); 2018:39\u201046","DOI":"10.1109\/BDCloud.2018.00020"},{"key":"e_1_2_10_68_1","doi-asserted-by":"publisher","DOI":"10.1145\/2827872"},{"key":"e_1_2_10_69_1","doi-asserted-by":"crossref","unstructured":"LiuNN MengX.Wisdom of the better few: cold start recommendation via representative based rating elicitation. Proceedings of the ACM Conference on Recommender Systems; 2011:37\u201044.","DOI":"10.1145\/2043932.2043943"},{"key":"e_1_2_10_70_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2018.2847631"},{"key":"e_1_2_10_71_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2016.2549182"},{"key":"e_1_2_10_72_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11276\u2010020\u201002387\u2010z"},{"key":"e_1_2_10_73_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-0-387-85820-3_8"}],"container-title":["Concurrency and Computation: Practice and Experience"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/cpe.7066","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/full-xml\/10.1002\/cpe.7066","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/cpe.7066","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,23]],"date-time":"2023-08-23T14:50:05Z","timestamp":1692802205000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1002\/cpe.7066"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,5,28]]},"references-count":72,"journal-issue":{"issue":"21","published-print":{"date-parts":[[2022,9,25]]}},"alternative-id":["10.1002\/cpe.7066"],"URL":"https:\/\/doi.org\/10.1002\/cpe.7066","archive":["Portico"],"relation":{},"ISSN":["1532-0626","1532-0634"],"issn-type":[{"value":"1532-0626","type":"print"},{"value":"1532-0634","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,5,28]]},"assertion":[{"value":"2021-09-22","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2022-04-20","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2022-05-28","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}