{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,6,4]],"date-time":"2024-06-04T21:18:02Z","timestamp":1717535882464},"reference-count":45,"publisher":"Wiley","issue":"19","license":[{"start":{"date-parts":[[2022,4,19]],"date-time":"2022-04-19T00:00:00Z","timestamp":1650326400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"}],"content-domain":{"domain":["onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["Concurrency and Computation"],"published-print":{"date-parts":[[2022,8,30]]},"abstract":"Abstract<\/jats:title>The rainfall prediction is one of the major problems in meteorological department since it is related to the economy and human life. In addition, the heavy rainfall is the major problem of natural disasters like drought and flood. The accuracy of the rainfall forecasting has been spotted for countries like India and economy is greatly dependent by agriculture. This paper introduces a new rainfall prediction model consists of Feature extraction and Prediction. The features are extracted by modified Empirical Mean Curve Decomposition namely Empirical Mean Median Curve Decomposition, and then subjected to statistical analysis. The results of the statistical features are processed by the classification process. Neural network (NN) is used for the rainfall prediction. To improve the accuracy of proposed work, an optimal weight is and predicted result are multiplied, then, the weight in NN is optimally selected by a Rider Exploitation based Whale Optimization Algorithm. Finally, the performance of the proposed work is compared and proved over the state\u2010of\u2010the\u2010art models in terms of prediction rate.<\/jats:p>","DOI":"10.1002\/cpe.7026","type":"journal-article","created":{"date-parts":[[2022,4,20]],"date-time":"2022-04-20T01:17:40Z","timestamp":1650417460000},"update-policy":"http:\/\/dx.doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Rider exploitation based whale optimization algorithm for rainfall prediction from meteorological data"],"prefix":"10.1002","volume":"34","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3491-6370","authenticated-orcid":false,"given":"Ratnakar","family":"Das","sequence":"first","affiliation":[{"name":"Department of Computer Science and Application, Research Scholar (BPUT), Asst. Prof, Department of Computer Science and Application Odisha University of Technology & Research (formerly College of Engineering and Technology) Bhubaneswar Odisha India"}]},{"given":"Dr\u02d9 Jibitesh","family":"Mishra","sequence":"additional","affiliation":[{"name":"Department of CSA Odisha University of Technology & Research (formerly College of Engineering and Technology), Odisha Bhubaneswar India"}]}],"member":"311","published-online":{"date-parts":[[2022,4,19]]},"reference":[{"key":"e_1_2_10_2_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.anres.2016.05.003"},{"key":"e_1_2_10_3_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2017.08.055"},{"key":"e_1_2_10_4_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jhydrol.2015.04.055"},{"issue":"1","key":"e_1_2_10_5_1","article-title":"The role of confidence and Trust in the Ability to understand the effect of social\u2010media marketing on brand loyalty and brand equity","volume":"2021","author":"Bhanot A","journal-title":"Acad Manage J"},{"key":"e_1_2_10_6_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.geog.2020.08.001"},{"key":"e_1_2_10_7_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.measurement.2020.108512"},{"key":"e_1_2_10_8_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.enggeo.2019.105434"},{"key":"e_1_2_10_9_1","first-page":"323","article-title":"Cable and tape transport systems: performances and costs resulting to the new technical standards","volume":"4","author":"Umberto P","year":"2013","journal-title":"Ingegneria Ferroviaria"},{"key":"e_1_2_10_10_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.atmosres.2018.03.008"},{"key":"e_1_2_10_11_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.enggeo.2017.05.003"},{"key":"e_1_2_10_12_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.agsy.2018.07.014"},{"key":"e_1_2_10_13_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.enggeo.2017.11.021"},{"key":"e_1_2_10_14_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.engappai.2012.05.023"},{"key":"e_1_2_10_15_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.agrformet.2018.06.016"},{"key":"e_1_2_10_16_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.wace.2018.07.004"},{"key":"e_1_2_10_17_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jhydrol.2018.04.044"},{"key":"e_1_2_10_18_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.watres.2018.06.022"},{"key":"e_1_2_10_19_1","first-page":"9","article-title":"La qualit\u00e0 percepita nel trasporto pubblico locale: un modello multicriteri per la selezione di scenari migliorativi The perceived quality of the local public transit: a multi\u2010criteria model to select improvement scenarios","volume":"717","author":"Petruccelli U","year":"2011","journal-title":"Ingegneria Ferroviaria"},{"key":"e_1_2_10_20_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.enggeo.2017.10.018"},{"key":"e_1_2_10_21_1","doi-asserted-by":"publisher","DOI":"10.1515\/bams-2020-0033"},{"key":"e_1_2_10_22_1","doi-asserted-by":"publisher","DOI":"10.1088\/1742-6596\/1228\/1\/012045"},{"key":"e_1_2_10_23_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jhydrol.2016.09.019"},{"key":"e_1_2_10_24_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jkss.2013.10.001"},{"key":"e_1_2_10_25_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.proeng.2016.07.423"},{"key":"e_1_2_10_26_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.protcy.2016.05.006"},{"issue":"2","key":"e_1_2_10_27_1","article-title":"Enhanced whale optimization algorithm for the eye movement recognition","volume":"4","author":"Gaikwad VS","year":"2021","journal-title":"J Comput Mech Power Syst Control"},{"issue":"4","key":"e_1_2_10_28_1","first-page":"12","article-title":"An enhanced whale optimization algorithm for massive MIMO system","volume":"2","author":"Rao IV","year":"2019","journal-title":"J Network Commun Syst"},{"issue":"3","key":"e_1_2_10_29_1","first-page":"23","article-title":"Enhanced whale optimization algorithm and wavelet transform for image steganography","volume":"2","author":"Nipanikar SI","year":"2019","journal-title":"Multimedia Res"},{"key":"e_1_2_10_30_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2018.09.018"},{"key":"e_1_2_10_31_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2017.05.029"},{"key":"e_1_2_10_32_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.compeleceng.2018.06.004"},{"key":"e_1_2_10_33_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2017.03.015"},{"key":"e_1_2_10_34_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jhydrol.2017.01.010"},{"key":"e_1_2_10_35_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jhydrol.2015.07.046"},{"key":"e_1_2_10_36_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.advwatres.2017.06.005"},{"key":"e_1_2_10_37_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.procs.2021.01.071"},{"key":"e_1_2_10_38_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jhydrol.2020.124789"},{"key":"e_1_2_10_39_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11269-019-02473-8"},{"key":"e_1_2_10_40_1","doi-asserted-by":"publisher","DOI":"10.1109\/TBME.2012.2221125"},{"key":"e_1_2_10_41_1","doi-asserted-by":"crossref","unstructured":"MohanY CheeSS KanD XinP FoongLP.Artificial neural network for classification of depressive and normal in EEG. In: 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES); 2016.","DOI":"10.1109\/IECBES.2016.7843459"},{"key":"e_1_2_10_42_1","doi-asserted-by":"publisher","DOI":"10.1109\/TIM.2018.2836058"},{"key":"e_1_2_10_43_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.advengsoft.2016.01.008"},{"key":"e_1_2_10_44_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2009.08.029"},{"key":"e_1_2_10_45_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cnsns.2012.06.009"},{"key":"e_1_2_10_46_1","doi-asserted-by":"publisher","DOI":"10.12785\/amis\/072L24"}],"container-title":["Concurrency and Computation: Practice and Experience"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/cpe.7026","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/full-xml\/10.1002\/cpe.7026","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/cpe.7026","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,23]],"date-time":"2023-08-23T18:03:38Z","timestamp":1692813818000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1002\/cpe.7026"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,4,19]]},"references-count":45,"journal-issue":{"issue":"19","published-print":{"date-parts":[[2022,8,30]]}},"alternative-id":["10.1002\/cpe.7026"],"URL":"https:\/\/doi.org\/10.1002\/cpe.7026","archive":["Portico"],"relation":{},"ISSN":["1532-0626","1532-0634"],"issn-type":[{"value":"1532-0626","type":"print"},{"value":"1532-0634","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,4,19]]},"assertion":[{"value":"2021-03-06","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2022-01-09","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2022-04-19","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}