{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,24]],"date-time":"2024-08-24T21:40:05Z","timestamp":1724535605897},"reference-count":39,"publisher":"Wiley","issue":"9","license":[{"start":{"date-parts":[[2021,2,24]],"date-time":"2021-02-24T00:00:00Z","timestamp":1614124800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"}],"content-domain":{"domain":["onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["Concurrency and Computation"],"published-print":{"date-parts":[[2021,5,10]]},"abstract":"Summary<\/jats:title>Handling missing values in time series data plays a key role in predicting and forecasting, as complete and clean historical data help to achieve higher accuracy. Numerous research works are present in multivariate time series imputation, but imputation in univariate time series data is least considered due to correlated variables unavailability. This article aims to propose an iterative imputation algorithm by clustering univariate time series data, considering the trend, seasonality, cyclical, and residue features of the data. The proposed method uses a similarity based nearest neighbor imputation approach on each clusters for filling missing values. The proposed method is evaluated on publicly available data set from the data market repository and UCI repository by randomly simulating missing patterns under low, moderate, and high missingness rates throughout the data series. The proposed method's outcome is evaluated with the imputeTestbench package with root mean squared error as an error metric and validated through prediction accuracy and concordance correlation coefficient statistical test. Experimental results show that the proposed imputation technique produces closer values to the original time series data set, resulting in low error rates compared with other existing imputation methods.<\/jats:p>","DOI":"10.1002\/cpe.6156","type":"journal-article","created":{"date-parts":[[2021,2,25]],"date-time":"2021-02-25T04:11:51Z","timestamp":1614226311000},"update-policy":"http:\/\/dx.doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":8,"title":["An unsupervised neural network approach for imputation of missing values in univariate time series data"],"prefix":"10.1002","volume":"33","author":[{"given":"Nickolas","family":"Savarimuthu","sequence":"first","affiliation":[{"name":"Department of Computer Applications National Institute of Technology Tiruchirappalli India"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6208-2705","authenticated-orcid":false,"given":"Shobha","family":"Karesiddaiah","sequence":"additional","affiliation":[{"name":"Department of Computer Applications National Institute of Technology Tiruchirappalli India"}]}],"member":"311","published-online":{"date-parts":[[2021,2,24]]},"reference":[{"key":"e_1_2_9_2_1","doi-asserted-by":"publisher","DOI":"10.1038\/350324a0"},{"key":"e_1_2_9_3_1","doi-asserted-by":"publisher","DOI":"10.1016\/0026-2714(95)00154-9"},{"volume-title":"Multiple Imputation for Nonresponse in Surveys","year":"2004","author":"Rubin DB","key":"e_1_2_9_4_1"},{"key":"e_1_2_9_5_1","unstructured":"FordB. An overview of hot\u2010deck procedures: incomplete data in sample surveys 1983;2."},{"issue":"1","key":"e_1_2_9_6_1","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1111\/j.2517-6161.1977.tb01600.x","article-title":"Maximum likelihood from incomplete data via the em algorithm","volume":"39","author":"Dempster AP","year":"1977","journal-title":"J Royal Stat Soc Ser B (Methodol)"},{"key":"e_1_2_9_7_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2014.12.073"},{"key":"e_1_2_9_8_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2013.08.023"},{"key":"e_1_2_9_9_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2013.12.005"},{"key":"e_1_2_9_10_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.csda.2015.04.009"},{"key":"e_1_2_9_11_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2010.06.021"},{"key":"e_1_2_9_12_1","doi-asserted-by":"publisher","DOI":"10.1016\/S0895-4356(03)00170-7"},{"key":"e_1_2_9_13_1","doi-asserted-by":"publisher","DOI":"10.1093\/aje\/kwq137"},{"key":"e_1_2_9_14_1","doi-asserted-by":"publisher","DOI":"10.1016\/S0895-4356(01)00476-0"},{"key":"e_1_2_9_15_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.atmosenv.2004.02.026"},{"key":"e_1_2_9_16_1","doi-asserted-by":"publisher","DOI":"10.1109\/TAC.2004.834121"},{"key":"e_1_2_9_17_1","doi-asserted-by":"publisher","DOI":"10.1093\/bioinformatics\/btg287"},{"key":"e_1_2_9_18_1","unstructured":"ShenL MaQ LiS. End\u2010to\u2010end time series imputation via residual short paths. Paper presented at: Proceedings of the Asian Conference on Machine Learning Beijing China;2018:248\u2010263"},{"key":"e_1_2_9_19_1","doi-asserted-by":"crossref","unstructured":"LiL McCannJ PollardNS FaloutsosC. Dynammo: mining and summarization of coevolving sequences with missing values. Paper presented at: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining San Diego CA;2009:507\u2010516.","DOI":"10.1145\/1557019.1557078"},{"key":"e_1_2_9_20_1","doi-asserted-by":"publisher","DOI":"10.1002\/sim.4067"},{"key":"e_1_2_9_21_1","unstructured":"AnavaO HazanE ZeeviA. Online time series prediction with missing data. Paper presented at: Proceedings of the International Conference on Machine Learning Lille France;2015:2191\u20132199."},{"key":"e_1_2_9_22_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jkss.2009.06.002"},{"key":"e_1_2_9_23_1","doi-asserted-by":"crossref","unstructured":"ZeileisA GrothendieckG. Zoo: S3 infrastructure for regular and irregular time series;2005. arXiv preprint math\/0505527https:\/\/doi.org\/10.18637\/jss.v014.i06.","DOI":"10.18637\/jss.v014.i06"},{"key":"e_1_2_9_24_1","unstructured":"MoritzS Sard\u00e1A Bartz\u2010BeielsteinT ZaeffererM StorkJ. Comparison of different methods for univariate time series imputation in r;2015. arXiv preprint arXiv:151003924."},{"key":"e_1_2_9_25_1","doi-asserted-by":"publisher","DOI":"10.32614\/RJ-2017-009"},{"key":"e_1_2_9_26_1","doi-asserted-by":"publisher","DOI":"10.3390\/w9100796"},{"key":"e_1_2_9_27_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.patrec.2018.09.020"},{"key":"e_1_2_9_28_1","doi-asserted-by":"publisher","DOI":"10.32614\/RJ-2018-024"},{"key":"e_1_2_9_29_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2019.03.044"},{"key":"e_1_2_9_30_1","doi-asserted-by":"publisher","DOI":"10.1002\/9781119482260"},{"key":"e_1_2_9_31_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10489-010-0244-1"},{"key":"e_1_2_9_32_1","doi-asserted-by":"publisher","DOI":"10.1080\/01621459.1988.10478722"},{"key":"e_1_2_9_33_1","doi-asserted-by":"crossref","unstructured":"HafenR. stlplus: enhanced seasonal decomposition of time series by Loess. R Package Version 05 1;2016.","DOI":"10.32614\/CRAN.package.stlplus"},{"key":"e_1_2_9_34_1","doi-asserted-by":"crossref","unstructured":"LuoJ ChenD. An enhanced art2 neural network for clustering analysis. Paper presented at: Proceedings of the 1st International Workshop on Knowledge Discovery and Data Mining (WKDD 2008) Adelaide SA Australia;2008:81\u201085; IEEE.","DOI":"10.1109\/WKDD.2008.117"},{"key":"e_1_2_9_35_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4899-7687-1_6"},{"key":"e_1_2_9_36_1","unstructured":"DingYX ShiY ShiY JiangJQ. A hybrid clustering algorithm based on art2 and its application in anomaly detection. Paper presented at: Proceedings of the 2008 International Conference on Wavelet Analysis and Pattern Recognition Hong Kong China;2008;1:282\u2010286; IEEE."},{"key":"e_1_2_9_37_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-10247-4"},{"key":"e_1_2_9_38_1","series-title":"Springer Series in Statistics","volume-title":"The Elements of Statistical Learning","author":"Friedman J","year":"2001"},{"key":"e_1_2_9_39_1","doi-asserted-by":"crossref","unstructured":"OehmckeS ZielinskiO KramerO. KNN ensembles with penalized DTW for multivariate time series imputation. Paper presented at: Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN) Vancouver British Columbia Canada;2016:2774\u20102781.","DOI":"10.1109\/IJCNN.2016.7727549"},{"key":"e_1_2_9_40_1","unstructured":"McBrideG. A Proposal for Strength\u2010of\u2010agreement Criteria for Lin's Concordance Correlation Coefficient. NIWA Client Report: HAM2005\u2010062."}],"container-title":["Concurrency and Computation: Practice and Experience"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/cpe.6156","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/full-xml\/10.1002\/cpe.6156","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/cpe.6156","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,24]],"date-time":"2024-08-24T20:46:43Z","timestamp":1724532403000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1002\/cpe.6156"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,2,24]]},"references-count":39,"journal-issue":{"issue":"9","published-print":{"date-parts":[[2021,5,10]]}},"alternative-id":["10.1002\/cpe.6156"],"URL":"https:\/\/doi.org\/10.1002\/cpe.6156","archive":["Portico"],"relation":{},"ISSN":["1532-0626","1532-0634"],"issn-type":[{"type":"print","value":"1532-0626"},{"type":"electronic","value":"1532-0634"}],"subject":[],"published":{"date-parts":[[2021,2,24]]},"assertion":[{"value":"2019-08-21","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2020-11-30","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2021-02-24","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}