{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T02:31:18Z","timestamp":1740105078422,"version":"3.37.3"},"reference-count":44,"publisher":"Wiley","issue":"18","license":[{"start":{"date-parts":[[2015,8,14]],"date-time":"2015-08-14T00:00:00Z","timestamp":1439510400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"}],"funder":[{"DOI":"10.13039\/501100003329","name":"Spanish \u2018Ministerio de Econom\u00eda y Competitividad\u2019","doi-asserted-by":"crossref","award":["TIN2012-32039"],"id":[{"id":"10.13039\/501100003329","id-type":"DOI","asserted-by":"crossref"}]},{"name":"FEDER funds"},{"DOI":"10.13039\/501100011011","name":"\u2018Junta de Andaluc\u00eda\u2019","doi-asserted-by":"crossref","award":["P11-TIC-7983"],"id":[{"id":"10.13039\/501100011011","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Concurrency and Computation"],"published-print":{"date-parts":[[2015,12,25]]},"abstract":"Summary<\/jats:title>Bioinformatics applications frequently involve high\u2010dimensional model building or classification problems that require reducing dimensionality to improve learning accuracy while irrelevant inputs are removed. Thus, feature selection has become an important issue on these applications. Moreover, several approaches for supervised and unsupervised feature selections as a multi\u2010objective optimization problem have been recently proposed to cope with issues on performance evaluation of classifiers and models. As parallel processing constitutes an important tool to reach efficient approaches that make it possible to tackle complex problems within reasonable computing times, in this paper, alternatives for the cooperation of subpopulations in multi\u2010objective evolutionary algorithms have been identified and classified, and several procedures have been implemented and evaluated on some synthetic and Brain\u2013Computer Interface datasets. The results show different improvements achieved in the solution quality and speedups, depending on the cooperation alternative and dataset. We show alternatives that even provide superlinear speedups with only small reductions in the solution quality, besides another cooperation alternative that improves the quality of the solutions with speedups similar to, or only slightly higher than, the speedup obtained by the parallel fitness evaluation in a master\u2010worker implementation (the alternative used as reference that behaves as the corresponding sequential multi\u2010objective approach). Copyright \u00a9 2015 John Wiley & Sons, Ltd.<\/jats:p>","DOI":"10.1002\/cpe.3594","type":"journal-article","created":{"date-parts":[[2015,8,14]],"date-time":"2015-08-14T23:38:55Z","timestamp":1439595535000},"page":"5476-5499","source":"Crossref","is-referenced-by-count":11,"title":["Leveraging cooperation for parallel multi\u2010objective feature selection in high\u2010dimensional EEG data"],"prefix":"10.1002","volume":"27","author":[{"given":"Dragi","family":"Kimovski","sequence":"first","affiliation":[{"name":"University of Information Science & Technology Ohrid Macedonia"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-2998-220X","authenticated-orcid":false,"given":"Julio","family":"Ortega","sequence":"additional","affiliation":[{"name":"Department of Computer Architecture and Technology, CITIC University of Granada Granada Spain"}]},{"given":"Andr\u00e9s","family":"Ortiz","sequence":"additional","affiliation":[{"name":"Department of Communications Engineering University of Malaga Malaga Spain"}]},{"given":"Ra\u00fal","family":"Ba\u00f1os","sequence":"additional","affiliation":[{"name":"Department of Business Administration and Management Catholic University of Murcia Murcia Spain"}]}],"member":"311","published-online":{"date-parts":[[2015,8,14]]},"reference":[{"key":"e_1_2_8_2_1","doi-asserted-by":"publisher","DOI":"10.1093\/bioinformatics\/btm344"},{"key":"e_1_2_8_3_1","doi-asserted-by":"publisher","DOI":"10.1088\/1741-2560\/4\/2\/R01"},{"key":"e_1_2_8_4_1","doi-asserted-by":"crossref","unstructured":"RuppR KleihSC LeebR Mill\u00e1nJR K\u00fcblerA M\u00fcller\u2010PutzGR. Brain\u2010Computer Interfaces and Assistive Technology.Brain\u2010computer\u2010interfaces in their ethical social and cultural contexts. The International Library of Ethics Law and Technology Gr\u00fcbler and Hildt (eds.) Springer Science\u2010Business Media Dordrecht 2014 12:7\u201338. DOI:10.1007\/978-94-017-8996-7_2.","DOI":"10.1007\/978-94-017-8996-7_2"},{"key":"e_1_2_8_5_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-540-30198-1_47"},{"key":"e_1_2_8_6_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICPR.2000.906006"},{"key":"e_1_2_8_7_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICPR.1990.118138"},{"key":"e_1_2_8_8_1","doi-asserted-by":"publisher","DOI":"10.1016\/0167-8655(89)90037-8"},{"key":"e_1_2_8_9_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-01692-4_3"},{"key":"e_1_2_8_10_1","doi-asserted-by":"publisher","DOI":"10.1109\/CEC.2000.870311"},{"key":"e_1_2_8_11_1","doi-asserted-by":"publisher","DOI":"10.5019\/j.ijcir.2006.64"},{"key":"e_1_2_8_12_1","doi-asserted-by":"publisher","DOI":"10.1142\/S021800140300271X"},{"key":"e_1_2_8_13_1","doi-asserted-by":"publisher","DOI":"10.1145\/347090.347169"},{"key":"e_1_2_8_14_1","doi-asserted-by":"crossref","unstructured":"MoritaM SabourinR BortolozziF SuenCY.Unsupervised feature selection using multi\u2010objective genetic algorithms for handwritten word recognition.Proceedings of the 7th International Conference on Document Analysis and Recognition IEEE Press New York NY 2003;666\u2013670. DOI:10.1109\/ICDAR.2003.1227746.","DOI":"10.1109\/ICDAR.2003.1227746"},{"key":"e_1_2_8_15_1","doi-asserted-by":"crossref","unstructured":"MierswaI WurstM.Information preserving multi\u2010objective feature selection for unsupervised learning.Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation \u2013 GECCO'06. ACM New York NY 2006;1545\u20131552. DOI:10.1145\/1143997.1144248","DOI":"10.1145\/1143997.1144248"},{"key":"e_1_2_8_16_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-01766-2_35"},{"key":"e_1_2_8_17_1","doi-asserted-by":"publisher","DOI":"10.1007\/s00453-006-1220-3"},{"key":"e_1_2_8_18_1","unstructured":"Garc\u00edaDJ HallLO GoldgofDB KramerK.A parallel feature selection algorithm from random subsets.Proceedings of the 17th European Conference on Machine Learning and the 10th European Conference on Principles and Practice of Knowledge Discovery in Databases Berlin Germany 2005;18\u201322."},{"key":"e_1_2_8_19_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10994-013-5373-4"},{"key":"e_1_2_8_20_1","doi-asserted-by":"crossref","unstructured":"KimovskiD OrtegaJ OrtizA Ba\u00f1osR.Feature selection in high\u2010dimensional EEG data by parallel multi\u2010objective optimization.Proceedings of the IEEE International Conference on Cluster Computer(CLUSTER) 2014;314\u2013322. DOI:10.1109\/CLUSTER.2014.6968782.","DOI":"10.1109\/CLUSTER.2014.6968782"},{"key":"e_1_2_8_21_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2015.01.061"},{"key":"e_1_2_8_22_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.1979.4766909"},{"key":"e_1_2_8_23_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-56927-2"},{"key":"e_1_2_8_24_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2012.07.021"},{"key":"e_1_2_8_25_1","doi-asserted-by":"crossref","unstructured":"PotterMA De JongKA.A cooperative coevolutionary approach to function optimization.Proceedings of Parallel Problem Solving from Nature(PPSN III) Springer Berlin Heidelberg 1994;249\u2013257. DOI:10.1007\/3-540-58484-6_269.","DOI":"10.1007\/3-540-58484-6_269"},{"key":"e_1_2_8_26_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-0-387-36797-2"},{"key":"e_1_2_8_27_1","doi-asserted-by":"crossref","unstructured":"AntonioLM Coello CoelloCA.Use of cooperative coevolution for solving large scale multiobjective optimization problems.Proceedings of IEEE Congress on Evolutionary Computation 2013;2758\u20132765. DOI:10.1109\/CEC.2013.6557903.","DOI":"10.1109\/CEC.2013.6557903"},{"key":"e_1_2_8_28_1","doi-asserted-by":"crossref","unstructured":"MaoJ HirasawaK MurataJ.Genetic symbiosis algorithm for multi\u2010objective optimization problem.Proceedings of the 9thIEEE International Workshop on Robot and Human Interactive Communication 2000;137\u2013142. DOI:10.1109\/ROMAN.2000.892484.","DOI":"10.1109\/ROMAN.2000.892484"},{"key":"e_1_2_8_29_1","doi-asserted-by":"crossref","unstructured":"Keerativuttitumrong N ChaiyaratanaN VaravithyaV.Multi\u2010objective cooperative co\u2010evolutionary genetic algorithm.Proceedings of the International Conference on Parallel problem Solving from Nature(PPSN VII) (Lecture Notes in Computer Science vol. 2439) Springer Berlin Heidelberg 2002;288\u2013297. DOI:10.1007\/3-540-45712-7_28.","DOI":"10.1007\/3-540-45712-7_28"},{"key":"e_1_2_8_30_1","doi-asserted-by":"publisher","DOI":"10.1109\/CEC.2003.1299614"},{"key":"e_1_2_8_31_1","doi-asserted-by":"crossref","unstructured":"ManeeratanaK BoonlongK ChaiyaratanaN.Multi\u2010objective optimisation by co\u2010operative co\u2010evolution.Proceedings of the International Conference on Parallel Problem Solving from Nature(PPSN VIII) (Lecture Notes in vComputer Science vol. 3242). Springer Berlin Heidelberg 2004;772\u2013781. DOI:10.1007\/978-3-540-30217-9_78.","DOI":"10.1007\/978-3-540-30217-9_78"},{"key":"e_1_2_8_32_1","doi-asserted-by":"crossref","unstructured":"IorioAW LiX.A cooperative coevolutionary multiobjective algorithm using non\u2010dominated sorting.Proceedings of Genetic and Evolutionary Computation \u2013 GECCO 2004(Lecture Notes in Computer Science vol. 3102)2004;537\u2013548. DOI:10.1007\/978-3-540-24854-5_56.","DOI":"10.1007\/978-3-540-24854-5_56"},{"key":"e_1_2_8_33_1","doi-asserted-by":"publisher","DOI":"10.1109\/TEVC.2005.860762"},{"key":"e_1_2_8_34_1","doi-asserted-by":"crossref","unstructured":"GohCK TanKC.A coevolutionary paradigm for dynamic multiobjective optimization. Evolutionary Multi\u2010objective Optimization in Uncertainty Environments (Studies in Computational Intelligence vol. 186) 2009;153\u2013185. DOI:10.1007\/978-3-540-95976-2_6.","DOI":"10.1007\/978-3-540-95976-2_6"},{"key":"e_1_2_8_35_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cor.2011.11.014"},{"key":"e_1_2_8_36_1","doi-asserted-by":"publisher","DOI":"10.1109\/TEVC.2009.2034647"},{"key":"e_1_2_8_37_1","doi-asserted-by":"publisher","DOI":"10.1016\/S0020-0190(01)00281-2"},{"key":"e_1_2_8_38_1","doi-asserted-by":"publisher","DOI":"10.1109\/4235.996017"},{"key":"e_1_2_8_39_1","unstructured":"DebK. \u201cMulti\u2010objective optimization using evolutionary algorithms\u201d. John Wiley & Sons Inc. 2001."},{"key":"e_1_2_8_40_1","unstructured":"https:\/\/sites.google.com\/site\/projectbci\/[18 February2015]."},{"key":"e_1_2_8_41_1","unstructured":"SOM toolbox for Matlab \u2013 CIS.http:\/\/www.cis.hut.fi\/somtoolbox\/[18 February2015]."},{"volume-title":"Pattern Recognition","year":"2009","author":"Theodoridis S","key":"e_1_2_8_42_1"},{"key":"e_1_2_8_43_1","doi-asserted-by":"publisher","DOI":"10.1023\/A:1025667309714"},{"volume-title":"Statistical Learning Theory","year":"1998","author":"Vapnik VN","key":"e_1_2_8_44_1"},{"key":"e_1_2_8_45_1","doi-asserted-by":"publisher","DOI":"10.1177\/001316446002000104"}],"container-title":["Concurrency and Computation: Practice and Experience"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.wiley.com\/onlinelibrary\/tdm\/v1\/articles\/10.1002%2Fcpe.3594","content-type":"unspecified","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/cpe.3594","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,13]],"date-time":"2023-09-13T11:53:16Z","timestamp":1694605996000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1002\/cpe.3594"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,8,14]]},"references-count":44,"journal-issue":{"issue":"18","published-print":{"date-parts":[[2015,12,25]]}},"alternative-id":["10.1002\/cpe.3594"],"URL":"https:\/\/doi.org\/10.1002\/cpe.3594","archive":["Portico"],"relation":{},"ISSN":["1532-0626","1532-0634"],"issn-type":[{"type":"print","value":"1532-0626"},{"type":"electronic","value":"1532-0634"}],"subject":[],"published":{"date-parts":[[2015,8,14]]}}}