{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,5,13]],"date-time":"2024-05-13T05:53:57Z","timestamp":1715579637470},"reference-count":34,"publisher":"Wiley","issue":"3","license":[{"start":{"date-parts":[[2018,11,23]],"date-time":"2018-11-23T00:00:00Z","timestamp":1542931200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"}],"funder":[{"DOI":"10.13039\/501100003593","name":"Conselho Nacional de Desenvolvimento Cient\u00edfico e Tecnol\u00f3gico","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003593","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004901","name":"Funda\u00e7\u00e3o de Amparo \u00e0 Pesquisa do Estado de Minas Gerais","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004901","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004901","name":"Funda\u00e7\u00e3o de Amparo \u00e0 Pesquisa do Estado de Minas Gerais","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004901","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003593","name":"Conselho Nacional de Desenvolvimento Cient\u00edfico e Tecnol\u00f3gico","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003593","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100006785","name":"Google","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100006785","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["asistdl.onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["Asso for Info Science & Tech"],"published-print":{"date-parts":[[2019,3]]},"abstract":"Sentiment analysis has become a very important tool for analysis of social media data. There are several methods developed, covering distinct aspects of the problem and disparate strategies. However, no single technique fits well in all cases or for all data sources. Supervised approaches may be able to adapt to specific situations, but require manually labeled training, which is very cumbersome and expensive to acquire, mainly for a new application. In this context, we propose to combine several popular and effective state\u2010of\u2010the\u2010practice sentiment analysis methods by means of an unsupervised bootstrapped strategy. One of our main goals is to reduce the large variability (low stability) of the unsupervised methods across different domains. The experimental results demonstrate that our combined method (aka, 10SENT) improves the effectiveness of the classification task, considering thirteen different data sets. Also, it tackles the key problem of cross\u2010domain low stability and produces the best (or close to best) results in almost all considered contexts, without any additional costs (e.g., manual labeling). Finally, we also investigate a transfer learning approach for sentiment analysis to gather additional (unsupervised) information for the proposed approach, and we show the potential of this technique to improve our results.<\/jats:p>","DOI":"10.1002\/asi.24117","type":"journal-article","created":{"date-parts":[[2018,11,23]],"date-time":"2018-11-23T12:53:20Z","timestamp":1542977600000},"page":"242-255","update-policy":"http:\/\/dx.doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":9,"title":["10SENT: A stable sentiment analysis method based on the combination of off\u2010the\u2010shelf approaches"],"prefix":"10.1002","volume":"70","author":[{"given":"Philipe F.","family":"Melo","sequence":"first","affiliation":[{"name":"Departamento de Ci\u00eancia da Computa\u00e7\u00e3o Universidade Federal de Minas Gerais Brazil"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8532-7701","authenticated-orcid":false,"given":"Daniel H.","family":"Dalip","sequence":"additional","affiliation":[{"name":"Centro Federal de Educa\u00e7\u00e3o Tecnol\u00f3gica de Minas Gerais Brazil"}]},{"given":"Manoel M.","family":"Junior","sequence":"additional","affiliation":[{"name":"Departamento de Ci\u00eancia da Computa\u00e7\u00e3o Universidade Federal de Minas Gerais Brazil"}]},{"given":"Marcos A.","family":"Gon\u00e7alves","sequence":"additional","affiliation":[{"name":"Departamento de Ci\u00eancia da Computa\u00e7\u00e3o Universidade Federal de Minas Gerais Brazil"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6875-6259","authenticated-orcid":false,"given":"Fabr\u00edcio","family":"Benevenuto","sequence":"additional","affiliation":[{"name":"Departamento de Ci\u00eancia da Computa\u00e7\u00e3o Universidade Federal de Minas Gerais Brazil"}]}],"member":"311","published-online":{"date-parts":[[2018,11,23]]},"reference":[{"key":"e_1_2_9_2_1","doi-asserted-by":"crossref","unstructured":"Ara\u00fajo M. Diniz J.P. Bastos L. Soares E. J\u00fanior M. Ferreira M. Ribeiro F. andBenevenuto F.(2016). iFeel 2.0: A multilingual benchmarking system for sentence\u2010level sentiment analysis. In Proceedings of 10th International AAAI Conference on Web and Social Media (ICWSM\u201916).Cologne Germany.","DOI":"10.1609\/icwsm.v10i1.14705"},{"key":"e_1_2_9_3_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jocs.2010.12.007"},{"key":"e_1_2_9_4_1","unstructured":"Bravo\u2010Marquez F. Frank E. andPfahringer B.(2015 June). Positive negative or neutral: Learning an expanded opinion lexicon from emoticon\u2010annotated tweets. In 24th International Joint Conference on Artificial Intelligence (IJCAI) (pp. 1229\u20131235).Palo Alto California."},{"key":"e_1_2_9_5_1","doi-asserted-by":"publisher","DOI":"10.1023\/A:1010933404324"},{"key":"e_1_2_9_6_1","doi-asserted-by":"publisher","DOI":"10.1145\/1961189.1961199"},{"key":"e_1_2_9_7_1","doi-asserted-by":"publisher","DOI":"10.1109\/MIS.2009.105"},{"key":"e_1_2_9_8_1","doi-asserted-by":"crossref","unstructured":"Deriu J. Lucchi A. De Luca V. Severyn A. M\u00fcller S. Cieliebak M. Hofmann T. andJaggi M.(2017). Leveraging large amounts of weakly supervised data for multi\u2010language sentiment classification. In Proceedings of the 26th International Conference on World Wide Web (WWW\u201917) (pp. 1045\u20131052).Perth Australia:International World Wide Web Conferences Steering Committee.","DOI":"10.1145\/3038912.3052611"},{"key":"e_1_2_9_9_1","unstructured":"dosSantos C. andGatti M.(2014). Deep convolutional neural networks for sentiment analysis of short texts. In Proceedings of the 25th International Conference on Computational Linguistics: Technical Papers (COLING 2014) (pp. 69\u201378). Dublin Ireland."},{"key":"e_1_2_9_10_1","doi-asserted-by":"crossref","unstructured":"Felbo B. Mislove A. S\u00f8gaard A. Rahwan I. andLehmann S.(2017). Using millions of emoji occurrences to learn any\u2010domain representations for detecting sentiment emotion and sarcasm. In Conference on Empirical Methods in Natural Language Processing (EMNLP). Copenhagen Denmark.","DOI":"10.18653\/v1\/D17-1169"},{"key":"e_1_2_9_11_1","unstructured":"Glorot X. Bordes A. andBengio Y.(2011). Domain adaptation for large\u2010scale sentiment classification: A deep learning approach. In Proceedings of the 28th International Conference on Machine Learning (ICML\u201011) (pp. 513\u2013520). Bellevue Washington."},{"key":"e_1_2_9_12_1","doi-asserted-by":"crossref","unstructured":"Gon\u00e7alves P. Ara\u00fajo M. Benevenuto F. andCha M.(2013). Comparing and combining sentiment analysis methods. In Proceedings of the First ACM Conference on Online Social Networks (COSN) (pp. 27\u201338). Boston: ACM.","DOI":"10.1145\/2512938.2512951"},{"key":"e_1_2_9_13_1","doi-asserted-by":"crossref","unstructured":"Gon\u00e7alves P. Dalip D.H. Costa H. Gon\u00e7alves M.A. andBenevenuto F.(2016). On the combination of \u201cOff\u2010The\u2010Shelf\u201d sentiment analysis methods. In Proceedings of the 31st Annual ACM Symposium on Applied Computing (SAC\u201916) (pp. 1158\u20131165).Pisa Italy.","DOI":"10.1145\/2851613.2851820"},{"key":"e_1_2_9_14_1","doi-asserted-by":"crossref","unstructured":"Hu M.andLiu B.(2004). Mining and summarizing customer reviews. In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD\u201904) (pp. 168\u2013177).Seattle Washington.","DOI":"10.1145\/1014052.1014073"},{"key":"e_1_2_9_15_1","doi-asserted-by":"crossref","unstructured":"Hutto C.andGilbert E.(2014). VADER: A parsimonious rule\u2010based model for sentiment analysis of social media text. In Proceedings of Eighth International AAAI Conference on Weblogs and Social Media (ICWSM\u201914).Ann Arbor Michigan.","DOI":"10.1609\/icwsm.v8i1.14550"},{"key":"e_1_2_9_16_1","unstructured":"Levallois C.(2013). Umigon: Sentiment analysis for tweets based on terms lists and heuristics. In Second Joint Conference on Lexical and Computational Semantics (* SEM) Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013) (Vol. 2 pp. 414\u2013417).Atlanta Georgia."},{"key":"e_1_2_9_17_1","doi-asserted-by":"publisher","DOI":"10.1111\/j.1467-8640.2012.00460.x"},{"key":"e_1_2_9_18_1","unstructured":"Mohammad S.M. Kiritchenko S. andZhu X.(2013). NRC\u2010Canada: Building the state\u2010of\u2010the\u2010art in sentiment analysis of tweets. In Second Joint Conference on Lexical and Computational Semantics (* SEM) Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013) (Vol. 2 pp. 321\u2013327).Atlanta Georgia."},{"key":"e_1_2_9_19_1","doi-asserted-by":"crossref","unstructured":"Moraes F. Vasconcelos M.A. Prado P. Dalip D.H. Almeida J.M. andGonalves M.A.(2013). Polarity detection of foursquare tips. In Proceedings of International Conference on Social Informatics (SOCINFO) (pp. 153\u2013162).Kyoto Japan:Springer.","DOI":"10.1007\/978-3-319-03260-3_14"},{"key":"e_1_2_9_20_1","doi-asserted-by":"crossref","unstructured":"Mudinas A. Zhang D. andLevene M.(2012). Combining lexicon and learning based approaches for concept\u2010level sentiment analysis. In Proceedings of the First International Workshop on Issues of Sentiment Discovery and Opinion Mining WISDOM\u201912. Article No. 5 (p. 5).Beijing China:ACM.","DOI":"10.1145\/2346676.2346681"},{"key":"e_1_2_9_21_1","doi-asserted-by":"crossref","unstructured":"Mukherjee S.andBhattacharyya P.(2012). WikiSent: Weakly supervised sentiment analysis through extractive summarization with Wikipedia. In Joint European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML\u2010PKDD\u201912) (pp. 774\u2013793).Berlin Heidelberg:Springer.","DOI":"10.1007\/978-3-642-33460-3_55"},{"key":"e_1_2_9_22_1","unstructured":"Nielsen F.\u00c5.(2011). A new ANEW: Evaluation of a word list for sentiment analysis in microblogs. In Proceedings of the ESWC2011 Workshop on \u2018Making Sense of Microposts\u2019: Big Things Come in Small Packages (pp. 93\u201398).Heraklion Greece."},{"key":"e_1_2_9_23_1","doi-asserted-by":"crossref","unstructured":"Oliveira N. Cortez P. andAreal N.(2013). On the predictability of stock market behavior using StockTwits sentiment and posting volume. In Proceedings of 16th Portuguese Conference on Artificial Intelligence (EPIA\u201913) (pp. 355\u2013365). Angra do Hero\u00edsmo A\u00e7ores Portugal: Springer.","DOI":"10.1007\/978-3-642-40669-0_31"},{"key":"e_1_2_9_24_1","doi-asserted-by":"crossref","unstructured":"Pang B. Lee L. andVaithyanathan S.(2002). Thumbs up? Sentiment classification using machine learning techniques. In Proceedings of the ACL\u201002 Conference on Empirical Methods in Natural Language Processing (ACL\u201902) (Vol. 10 pp. 79\u201386).Stroudsburg Pennsylvania:Association for Computational Linguistics.","DOI":"10.3115\/1118693.1118704"},{"key":"e_1_2_9_25_1","first-page":"2825","article-title":"Scikit\u2010learn: Machine learning in Python","volume":"12","author":"Pedregosa F.","year":"2011","journal-title":"Journal of Machine Learning Research (JMLR)"},{"key":"e_1_2_9_26_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.joi.2009.01.003"},{"key":"e_1_2_9_27_1","doi-asserted-by":"publisher","DOI":"10.1140\/epjds\/s13688-016-0085-1"},{"key":"e_1_2_9_28_1","doi-asserted-by":"crossref","unstructured":"Siddiqua U.A. Ahsan T. andChy A.N.(2016). Combining a rule\u2010based classifier with weakly supervised learning for twitter sentiment analysis. In Innovations in Science Engineering and Technology (ICISET) International Conference (pp. 1\u20134). Kumira Chittagong Bangladesh: IEEE.","DOI":"10.1109\/ICISET.2016.7856499"},{"issue":"1","key":"e_1_2_9_29_1","first-page":"2063","article-title":"Pattern for Python","volume":"13","author":"Smedt T.D.","year":"2012","journal-title":"Journal of Machine Learning Research"},{"key":"e_1_2_9_30_1","doi-asserted-by":"publisher","DOI":"10.1162\/COLI_a_00049"},{"key":"e_1_2_9_31_1","unstructured":"Thelwall M.(2013). Heart and soul: Sentiment strength detection in the social web with SentiStrength. In J. Holyst (Ed.) Cyberemotions: Collective Emotions in Cyberspace (CyberEmotions\u201913) (pp. 1\u201314). Berlin: Springer."},{"key":"e_1_2_9_32_1","doi-asserted-by":"crossref","unstructured":"Wang L. andXia R.(2017). Sentiment lexicon construction with representation learning based on hierarchical sentiment supervision. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 502\u2013510). Copenhagen Denmark.","DOI":"10.18653\/v1\/D17-1052"},{"key":"e_1_2_9_33_1","doi-asserted-by":"crossref","unstructured":"Wilson T. Hoffmann P. Somasundaran S. Kessler J. Wiebe J. Choi Y. Cardie C. Riloff E. andPatwardhan S.(2005). OpinionFinder: A system for subjectivity analysis. In Proceedings of HLT\/EMNLP 2005 Interactive Demonstrations (pp. 34\u201335).British Columbia Canada:Association for Computational Linguistics.","DOI":"10.3115\/1225733.1225751"},{"key":"e_1_2_9_34_1","unstructured":"Zhang L. Ghosh R. Dekhil M. Hsu M. andLiu B.(2011).Combining lexicon\u2010based and learning\u2010based methods for Twitter sentiment analysis. HP Laboratories Technical Report HPL\u20102011 89. Retrieved fromhttp:\/\/www.hpl.hp.com\/techreports\/2011\/HPL-2011-89.html"},{"key":"e_1_2_9_35_1","doi-asserted-by":"publisher","DOI":"10.1002\/widm.1253"}],"container-title":["Journal of the Association for Information Science and Technology"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.wiley.com\/onlinelibrary\/tdm\/v1\/articles\/10.1002%2Fasi.24117","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/asi.24117","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/full-xml\/10.1002\/asi.24117","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/asi.24117","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,14]],"date-time":"2023-09-14T21:59:12Z","timestamp":1694728752000},"score":1,"resource":{"primary":{"URL":"https:\/\/asistdl.onlinelibrary.wiley.com\/doi\/10.1002\/asi.24117"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,11,23]]},"references-count":34,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2019,3]]}},"alternative-id":["10.1002\/asi.24117"],"URL":"https:\/\/doi.org\/10.1002\/asi.24117","archive":["Portico"],"relation":{},"ISSN":["2330-1635","2330-1643"],"issn-type":[{"value":"2330-1635","type":"print"},{"value":"2330-1643","type":"electronic"}],"subject":[],"published":{"date-parts":[[2018,11,23]]},"assertion":[{"value":"2017-11-21","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2018-07-14","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2018-11-23","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}