{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:38:17Z","timestamp":1732041497764},"reference-count":53,"publisher":"Wiley","issue":"7","license":[{"start":{"date-parts":[[2022,5,12]],"date-time":"2022-05-12T00:00:00Z","timestamp":1652313600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/100014717","name":"National Outstanding Youth Science Fund Project of National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61922032"],"id":[{"id":"10.13039\/100014717","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["Advanced Intelligent Systems"],"published-print":{"date-parts":[[2022,7]]},"abstract":"An electronic nose (e\u2010nose) mimics the mammalian olfactory system in identifying odors and expands human olfaction boundaries by tracing toxins and explosives. However, existing feature\u2010based odor recognition algorithms rely on domain\u2010specific expertise, which may limit the performance due to information loss during the feature extraction process. Inspired by human olfaction, a smart electronic nose enabled by an all\u2010feature olfactory algorithm (AFOA) is proposed, whereby all features in a gas sensing cycle of semiconductor gas sensors, including the response, equilibrium, and recovery processes are utilized. Specifically, our method combines 1D convolutional and recurrent neural networks with channel and temporal attention modules to fully utilize complementary global and dynamic information. It is further demonstrated that a novel data augmentation method can transform the raw data into a suitable representation for feature extraction. Results show that the e\u2010nose simply comprising of six semiconductor gas sensors achieves superior performances to state\u2010of\u2010the\u2010art methods on the Chinese liquor data. Ablation studies reveal the contribution of each sensor in odor recognition. Therefore, a deep\u2010learning\u2010enabled codesign of sensor arrays and recognition algorithms can reduce the heavy demand for a huge amount of highly specialized gas sensors and provide interpretable insights into odor recognition dynamics in an iterative way.<\/jats:p><\/jats:sec>","DOI":"10.1002\/aisy.202200074","type":"journal-article","created":{"date-parts":[[2022,5,13]],"date-time":"2022-05-13T04:49:06Z","timestamp":1652417346000},"update-policy":"http:\/\/dx.doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":32,"title":["Smart Electronic Nose Enabled by an All\u2010Feature Olfactory Algorithm"],"prefix":"10.1002","volume":"4","author":[{"given":"Cong","family":"Fang","sequence":"first","affiliation":[{"name":"School of Electronic Information and Communications Huazhong University of Science and Technology Wuhan 430074 China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2646-3313","authenticated-orcid":false,"given":"Hua-Yao","family":"Li","sequence":"additional","affiliation":[{"name":"School of Optical and Electronic Information Optics Valley Laboratory Huazhong University of Science and Technology Wuhan 430074 China"}]},{"given":"Long","family":"Li","sequence":"additional","affiliation":[{"name":"School of Optical and Electronic Information Optics Valley Laboratory Huazhong University of Science and Technology Wuhan 430074 China"}]},{"given":"Hu-Yin","family":"Su","sequence":"additional","affiliation":[{"name":"School of Optical and Electronic Information Optics Valley Laboratory Huazhong University of Science and Technology Wuhan 430074 China"}]},{"given":"Jiang","family":"Tang","sequence":"additional","affiliation":[{"name":"School of Optical and Electronic Information Optics Valley Laboratory Huazhong University of Science and Technology Wuhan 430074 China"}]},{"given":"Xiang","family":"Bai","sequence":"additional","affiliation":[{"name":"School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan 430074 China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4222-2299","authenticated-orcid":false,"given":"Huan","family":"Liu","sequence":"additional","affiliation":[{"name":"School of Optical and Electronic Information Optics Valley Laboratory Huazhong University of Science and Technology Wuhan 430074 China"}]}],"member":"311","published-online":{"date-parts":[[2022,5,12]]},"reference":[{"doi-asserted-by":"publisher","key":"e_1_2_10_2_1","DOI":"10.1016\/0092-8674(91)90418-X"},{"doi-asserted-by":"publisher","key":"e_1_2_10_3_1","DOI":"10.1126\/science.1249168"},{"doi-asserted-by":"publisher","key":"e_1_2_10_4_1","DOI":"10.1038\/299352a0"},{"doi-asserted-by":"publisher","key":"e_1_2_10_5_1","DOI":"10.1002\/adma.202002075"},{"doi-asserted-by":"publisher","key":"e_1_2_10_6_1","DOI":"10.1109\/TCHMT.1987.1134730"},{"unstructured":"T.Pearce J.Gardner S.Friel inSystems Man and Cybernetics Conf. (SMC) IEEE Piscataway NJ1993 pp.165\u2013170.","key":"e_1_2_10_7_1"},{"doi-asserted-by":"publisher","key":"e_1_2_10_8_1","DOI":"10.1016\/0925-4005(93)01117-M"},{"doi-asserted-by":"publisher","key":"e_1_2_10_9_1","DOI":"10.1016\/0925-4005(94)87089-6"},{"doi-asserted-by":"publisher","key":"e_1_2_10_10_1","DOI":"10.1021\/cr068121q"},{"doi-asserted-by":"publisher","key":"e_1_2_10_11_1","DOI":"10.1016\/j.jfoodeng.2014.07.019"},{"doi-asserted-by":"publisher","key":"e_1_2_10_12_1","DOI":"10.3390\/s90705099"},{"doi-asserted-by":"publisher","key":"e_1_2_10_13_1","DOI":"10.1016\/j.talanta.2014.02.016"},{"doi-asserted-by":"publisher","key":"e_1_2_10_14_1","DOI":"10.1016\/j.snb.2006.09.047"},{"doi-asserted-by":"publisher","key":"e_1_2_10_15_1","DOI":"10.1016\/j.snb.2005.02.017"},{"doi-asserted-by":"publisher","key":"e_1_2_10_16_1","DOI":"10.1016\/j.snb.2011.08.015"},{"doi-asserted-by":"publisher","key":"e_1_2_10_17_1","DOI":"10.1016\/j.foodres.2011.09.008"},{"doi-asserted-by":"crossref","unstructured":"H.-R.Hou Y.-J.Liu Q.-H.Meng in8th Annual Inter. Conf. on CYBER Technology in Automation Control and Intelligent Systems (CYBER)IEEE Tianjin China2018 pp.297\u2013301.","key":"e_1_2_10_18_1","DOI":"10.1109\/CYBER.2018.8688166"},{"doi-asserted-by":"publisher","key":"e_1_2_10_19_1","DOI":"10.1109\/JSEN.2017.2712742"},{"doi-asserted-by":"publisher","key":"e_1_2_10_20_1","DOI":"10.1063\/1.5064540"},{"key":"e_1_2_10_21_1","volume":"8","author":"Wu X.","year":"2019","journal-title":"Foods"},{"doi-asserted-by":"publisher","key":"e_1_2_10_22_1","DOI":"10.1063\/1.4874326"},{"doi-asserted-by":"publisher","key":"e_1_2_10_23_1","DOI":"10.1109\/JSEN.2017.2657653"},{"doi-asserted-by":"crossref","unstructured":"H.-R.Hou Q.-H.Meng X.Zhang in24th Inter. Conf. on Pattern Recognition (ICPR)IEEE Beijing China2018 pp.237\u2013241.","key":"e_1_2_10_24_1","DOI":"10.1109\/ICPR.2018.8545217"},{"doi-asserted-by":"publisher","key":"e_1_2_10_25_1","DOI":"10.1016\/j.snb.2012.11.071"},{"doi-asserted-by":"publisher","key":"e_1_2_10_26_1","DOI":"10.1016\/j.jfoodeng.2015.06.007"},{"doi-asserted-by":"publisher","key":"e_1_2_10_27_1","DOI":"10.3390\/s17020272"},{"doi-asserted-by":"publisher","key":"e_1_2_10_28_1","DOI":"10.1093\/chemse\/24.2.161"},{"doi-asserted-by":"publisher","key":"e_1_2_10_29_1","DOI":"10.1016\/j.bbr.2010.11.015"},{"doi-asserted-by":"publisher","key":"e_1_2_10_30_1","DOI":"10.1007\/s12078-011-9088-2"},{"doi-asserted-by":"publisher","key":"e_1_2_10_31_1","DOI":"10.1038\/nature14539"},{"doi-asserted-by":"publisher","key":"e_1_2_10_32_1","DOI":"10.3390\/s19010217"},{"doi-asserted-by":"publisher","key":"e_1_2_10_33_1","DOI":"10.3390\/s19091960"},{"doi-asserted-by":"crossref","unstructured":"Q.Wang T.Xie S.Wang inChinese Automation Congress (CAC)IEEE Xi'an China2018 pp.3486\u20133491.","key":"e_1_2_10_34_1","DOI":"10.1109\/CAC.2018.8623060"},{"doi-asserted-by":"publisher","key":"e_1_2_10_35_1","DOI":"10.1038\/nnano.2012.127"},{"doi-asserted-by":"publisher","key":"e_1_2_10_36_1","DOI":"10.1038\/nmat4007"},{"unstructured":"K.He X.Zhang S.Ren J.Sun inConf. on Computer Vision and Pattern Recognition (CVPR)IEEE Las Vegas NV USA2016 pp.770\u2013778.","key":"e_1_2_10_37_1"},{"unstructured":"S.Ioffe C.Szegedy inInternational conference on machine learning (ICML)JMLR.org Lille France2015 pp.448\u2013456.","key":"e_1_2_10_38_1"},{"unstructured":"V.Nair G. E.Hinton inInternational conference on machine learning (ICML)JMLR.org Haifa Israel2010 pp.807\u2013814.","key":"e_1_2_10_39_1"},{"doi-asserted-by":"crossref","unstructured":"S.Woo J.Park J.-Y.Lee I.-S.Kweon inEuropean Conference on Computer Vision (ECCV)Springer Munich Germany2018 pp.3\u201319.","key":"e_1_2_10_40_1","DOI":"10.1007\/978-3-030-01234-2_1"},{"doi-asserted-by":"publisher","key":"e_1_2_10_41_1","DOI":"10.1162\/neco.1997.9.8.1735"},{"year":"2014","author":"Zaremba W.","journal-title":"ArXiv","key":"e_1_2_10_42_1"},{"volume-title":"Springer","year":"2012","author":"Graves A.","key":"e_1_2_10_43_1"},{"key":"e_1_2_10_44_1","first-page":"1929","volume":"15","author":"Srivastava N.","year":"2014","journal-title":"J. Mach. Learn. Res."},{"unstructured":"D. P.Kingma J.Ba inICLRICLR San Diego CA USA2015.","key":"e_1_2_10_45_1"},{"unstructured":"A.Skarysz Y.Alkhalifah K.Darnley M.Eddleston Y.Hu D.McLaren W.Nailon D.Salman M.Sykora C. P.Thomas A.Soltoggio inInter. Joint Conf. on Neural Networks (IJCNN)IEEE Rio de Janeiro Brazil2018 pp.1\u20138.","key":"e_1_2_10_46_1"},{"doi-asserted-by":"publisher","key":"e_1_2_10_47_1","DOI":"10.1038\/s41586-020-2649-2"},{"key":"e_1_2_10_48_1","first-page":"2825","volume":"12","author":"Pedregosa F.","year":"2011","journal-title":"J. Mach. Learn. Res."},{"doi-asserted-by":"publisher","key":"e_1_2_10_49_1","DOI":"10.1038\/s41592-019-0686-2"},{"unstructured":"Z.Wang T.Oates inIJCAIIJCAI Buenos Aires Argentina2015 pp.3939\u20133945.","key":"e_1_2_10_50_1"},{"key":"e_1_2_10_51_1","first-page":"2579","volume":"9","author":"Maaten L. V. D.","year":"2008","journal-title":"J. Mach. Learn. Res."},{"doi-asserted-by":"publisher","key":"e_1_2_10_52_1","DOI":"10.1002\/adma.201304366"},{"doi-asserted-by":"publisher","key":"e_1_2_10_53_1","DOI":"10.1016\/j.snb.2013.11.005"},{"doi-asserted-by":"publisher","key":"e_1_2_10_54_1","DOI":"10.1109\/TPAMI.2016.2646371"}],"container-title":["Advanced Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/aisy.202200074","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/full-xml\/10.1002\/aisy.202200074","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/aisy.202200074","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,24]],"date-time":"2024-09-24T17:18:16Z","timestamp":1727198296000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1002\/aisy.202200074"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,5,12]]},"references-count":53,"journal-issue":{"issue":"7","published-print":{"date-parts":[[2022,7]]}},"alternative-id":["10.1002\/aisy.202200074"],"URL":"https:\/\/doi.org\/10.1002\/aisy.202200074","archive":["Portico"],"relation":{},"ISSN":["2640-4567","2640-4567"],"issn-type":[{"type":"print","value":"2640-4567"},{"type":"electronic","value":"2640-4567"}],"subject":[],"published":{"date-parts":[[2022,5,12]]},"assertion":[{"value":"2022-03-18","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2022-05-12","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}