@inproceedings{peinelt-etal-2019-aiming,
title = "Aiming beyond the Obvious: Identifying Non-Obvious Cases in Semantic Similarity Datasets",
author = "Peinelt, Nicole and
Liakata, Maria and
Nguyen, Dong",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1268/",
doi = "10.18653/v1/P19-1268",
pages = "2792--2798",
abstract = "Existing datasets for scoring text pairs in terms of semantic similarity contain instances whose resolution differs according to the degree of difficulty. This paper proposes to distinguish obvious from non-obvious text pairs based on superficial lexical overlap and ground-truth labels. We characterise existing datasets in terms of containing difficult cases and find that recently proposed models struggle to capture the non-obvious cases of semantic similarity. We describe metrics that emphasise cases of similarity which require more complex inference and propose that these are used for evaluating systems for semantic similarity."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="peinelt-etal-2019-aiming">
<titleInfo>
<title>Aiming beyond the Obvious: Identifying Non-Obvious Cases in Semantic Similarity Datasets</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicole</namePart>
<namePart type="family">Peinelt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Liakata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dong</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Existing datasets for scoring text pairs in terms of semantic similarity contain instances whose resolution differs according to the degree of difficulty. This paper proposes to distinguish obvious from non-obvious text pairs based on superficial lexical overlap and ground-truth labels. We characterise existing datasets in terms of containing difficult cases and find that recently proposed models struggle to capture the non-obvious cases of semantic similarity. We describe metrics that emphasise cases of similarity which require more complex inference and propose that these are used for evaluating systems for semantic similarity.</abstract>
<identifier type="citekey">peinelt-etal-2019-aiming</identifier>
<identifier type="doi">10.18653/v1/P19-1268</identifier>
<location>
<url>https://aclanthology.org/P19-1268/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>2792</start>
<end>2798</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Aiming beyond the Obvious: Identifying Non-Obvious Cases in Semantic Similarity Datasets
%A Peinelt, Nicole
%A Liakata, Maria
%A Nguyen, Dong
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F peinelt-etal-2019-aiming
%X Existing datasets for scoring text pairs in terms of semantic similarity contain instances whose resolution differs according to the degree of difficulty. This paper proposes to distinguish obvious from non-obvious text pairs based on superficial lexical overlap and ground-truth labels. We characterise existing datasets in terms of containing difficult cases and find that recently proposed models struggle to capture the non-obvious cases of semantic similarity. We describe metrics that emphasise cases of similarity which require more complex inference and propose that these are used for evaluating systems for semantic similarity.
%R 10.18653/v1/P19-1268
%U https://aclanthology.org/P19-1268/
%U https://doi.org/10.18653/v1/P19-1268
%P 2792-2798
Markdown (Informal)
[Aiming beyond the Obvious: Identifying Non-Obvious Cases in Semantic Similarity Datasets](https://aclanthology.org/P19-1268/) (Peinelt et al., ACL 2019)
ACL