@inproceedings{delbrouck-etal-2024-radgraph,
title = "{R}ad{G}raph-{XL}: A Large-Scale Expert-Annotated Dataset for Entity and Relation Extraction from Radiology Reports",
author = "Delbrouck, Jean-Benoit and
Chambon, Pierre and
Chen, Zhihong and
Varma, Maya and
Johnston, Andrew and
Blankemeier, Louis and
Van Veen, Dave and
Bui, Tan and
Truong, Steven and
Langlotz, Curtis",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.765/",
doi = "10.18653/v1/2024.findings-acl.765",
pages = "12902--12915",
abstract = "In order to enable extraction of structured clinical data from unstructured radiology reports, we introduce RadGraph-XL, a large-scale, expert-annotated dataset for clinical entity and relation extraction. RadGraph-XL consists of 2,300 radiology reports, which are annotated with over 410,000 entities and relations by board-certified radiologists. Whereas previous approaches focus solely on chest X-rays, RadGraph-XL includes data from four anatomy-modality pairs - chest CT, abdomen/pelvis CT, brain MR, and chest X-rays. Then, in order to automate structured information extraction, we use RadGraph-XL to train transformer-based models for clinical entity and relation extraction. Our evaluations include comprehensive ablation studies as well as an expert reader study that evaluates trained models on out-of-domain data. Results demonstrate that our model surpasses the performance of previous methods by up to 52{\%} and notably outperforms GPT-4 in this domain. We release RadGraph-XL as well as our trained model to foster further innovation and research in structured clinical information extraction."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="delbrouck-etal-2024-radgraph">
<titleInfo>
<title>RadGraph-XL: A Large-Scale Expert-Annotated Dataset for Entity and Relation Extraction from Radiology Reports</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jean-Benoit</namePart>
<namePart type="family">Delbrouck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Chambon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhihong</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maya</namePart>
<namePart type="family">Varma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Johnston</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Louis</namePart>
<namePart type="family">Blankemeier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dave</namePart>
<namePart type="family">Van Veen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tan</namePart>
<namePart type="family">Bui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Truong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Curtis</namePart>
<namePart type="family">Langlotz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In order to enable extraction of structured clinical data from unstructured radiology reports, we introduce RadGraph-XL, a large-scale, expert-annotated dataset for clinical entity and relation extraction. RadGraph-XL consists of 2,300 radiology reports, which are annotated with over 410,000 entities and relations by board-certified radiologists. Whereas previous approaches focus solely on chest X-rays, RadGraph-XL includes data from four anatomy-modality pairs - chest CT, abdomen/pelvis CT, brain MR, and chest X-rays. Then, in order to automate structured information extraction, we use RadGraph-XL to train transformer-based models for clinical entity and relation extraction. Our evaluations include comprehensive ablation studies as well as an expert reader study that evaluates trained models on out-of-domain data. Results demonstrate that our model surpasses the performance of previous methods by up to 52% and notably outperforms GPT-4 in this domain. We release RadGraph-XL as well as our trained model to foster further innovation and research in structured clinical information extraction.</abstract>
<identifier type="citekey">delbrouck-etal-2024-radgraph</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.765</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.765/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>12902</start>
<end>12915</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T RadGraph-XL: A Large-Scale Expert-Annotated Dataset for Entity and Relation Extraction from Radiology Reports
%A Delbrouck, Jean-Benoit
%A Chambon, Pierre
%A Chen, Zhihong
%A Varma, Maya
%A Johnston, Andrew
%A Blankemeier, Louis
%A Van Veen, Dave
%A Bui, Tan
%A Truong, Steven
%A Langlotz, Curtis
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F delbrouck-etal-2024-radgraph
%X In order to enable extraction of structured clinical data from unstructured radiology reports, we introduce RadGraph-XL, a large-scale, expert-annotated dataset for clinical entity and relation extraction. RadGraph-XL consists of 2,300 radiology reports, which are annotated with over 410,000 entities and relations by board-certified radiologists. Whereas previous approaches focus solely on chest X-rays, RadGraph-XL includes data from four anatomy-modality pairs - chest CT, abdomen/pelvis CT, brain MR, and chest X-rays. Then, in order to automate structured information extraction, we use RadGraph-XL to train transformer-based models for clinical entity and relation extraction. Our evaluations include comprehensive ablation studies as well as an expert reader study that evaluates trained models on out-of-domain data. Results demonstrate that our model surpasses the performance of previous methods by up to 52% and notably outperforms GPT-4 in this domain. We release RadGraph-XL as well as our trained model to foster further innovation and research in structured clinical information extraction.
%R 10.18653/v1/2024.findings-acl.765
%U https://aclanthology.org/2024.findings-acl.765/
%U https://doi.org/10.18653/v1/2024.findings-acl.765
%P 12902-12915
Markdown (Informal)
[RadGraph-XL: A Large-Scale Expert-Annotated Dataset for Entity and Relation Extraction from Radiology Reports](https://aclanthology.org/2024.findings-acl.765/) (Delbrouck et al., Findings 2024)
ACL
- Jean-Benoit Delbrouck, Pierre Chambon, Zhihong Chen, Maya Varma, Andrew Johnston, Louis Blankemeier, Dave Van Veen, Tan Bui, Steven Truong, and Curtis Langlotz. 2024. RadGraph-XL: A Large-Scale Expert-Annotated Dataset for Entity and Relation Extraction from Radiology Reports. In Findings of the Association for Computational Linguistics: ACL 2024, pages 12902–12915, Bangkok, Thailand. Association for Computational Linguistics.