@inproceedings{jawahar-etal-2024-mixture,
title = "Mixture-of-Supernets: Improving Weight-Sharing Supernet Training with Architecture-Routed Mixture-of-Experts",
author = "Jawahar, Ganesh and
Yang, Haichuan and
Xiong, Yunyang and
Liu, Zechun and
Wang, Dilin and
Sun, Fei and
Li, Meng and
Pappu, Aasish and
Oguz, Barlas and
Abdul-Mageed, Muhammad and
Lakshmanan, Laks and
Krishnamoorthi, Raghuraman and
Chandra, Vikas",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.621",
doi = "10.18653/v1/2024.findings-acl.621",
pages = "10424--10443",
abstract = "Weight-sharing supernets are crucial for performance estimation in cutting-edge neural architecture search (NAS) frameworks. Despite their ability to generate diverse subnetworks without retraining, the quality of these subnetworks is not guaranteed due to weight sharing. In NLP tasks like machine translation and pre-trained language modeling, there is a significant performance gap between supernet and training from scratch for the same model architecture, necessitating retraining post optimal architecture identification.This study introduces a solution called mixture-of-supernets, a generalized supernet formulation leveraging mixture-of-experts (MoE) to enhance supernet model expressiveness with minimal training overhead. Unlike conventional supernets, this method employs an architecture-based routing mechanism, enabling indirect sharing of model weights among subnetworks. This customization of weights for specific architectures, learned through gradient descent, minimizes retraining time, significantly enhancing training efficiency in NLP. The proposed method attains state-of-the-art (SoTA) performance in NAS for fast machine translation models, exhibiting a superior latency-BLEU tradeoff compared to HAT, the SoTA NAS framework for machine translation. Furthermore, it excels in NAS for building memory-efficient task-agnostic BERT models, surpassing NAS-BERT and AutoDistil across various model sizes. The code can be found at: https://github.com/UBC-NLP/MoS.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jawahar-etal-2024-mixture">
<titleInfo>
<title>Mixture-of-Supernets: Improving Weight-Sharing Supernet Training with Architecture-Routed Mixture-of-Experts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ganesh</namePart>
<namePart type="family">Jawahar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haichuan</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yunyang</namePart>
<namePart type="family">Xiong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zechun</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dilin</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meng</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aasish</namePart>
<namePart type="family">Pappu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barlas</namePart>
<namePart type="family">Oguz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Muhammad</namePart>
<namePart type="family">Abdul-Mageed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laks</namePart>
<namePart type="family">Lakshmanan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raghuraman</namePart>
<namePart type="family">Krishnamoorthi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vikas</namePart>
<namePart type="family">Chandra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Weight-sharing supernets are crucial for performance estimation in cutting-edge neural architecture search (NAS) frameworks. Despite their ability to generate diverse subnetworks without retraining, the quality of these subnetworks is not guaranteed due to weight sharing. In NLP tasks like machine translation and pre-trained language modeling, there is a significant performance gap between supernet and training from scratch for the same model architecture, necessitating retraining post optimal architecture identification.This study introduces a solution called mixture-of-supernets, a generalized supernet formulation leveraging mixture-of-experts (MoE) to enhance supernet model expressiveness with minimal training overhead. Unlike conventional supernets, this method employs an architecture-based routing mechanism, enabling indirect sharing of model weights among subnetworks. This customization of weights for specific architectures, learned through gradient descent, minimizes retraining time, significantly enhancing training efficiency in NLP. The proposed method attains state-of-the-art (SoTA) performance in NAS for fast machine translation models, exhibiting a superior latency-BLEU tradeoff compared to HAT, the SoTA NAS framework for machine translation. Furthermore, it excels in NAS for building memory-efficient task-agnostic BERT models, surpassing NAS-BERT and AutoDistil across various model sizes. The code can be found at: https://github.com/UBC-NLP/MoS.</abstract>
<identifier type="citekey">jawahar-etal-2024-mixture</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.621</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.621</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>10424</start>
<end>10443</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Mixture-of-Supernets: Improving Weight-Sharing Supernet Training with Architecture-Routed Mixture-of-Experts
%A Jawahar, Ganesh
%A Yang, Haichuan
%A Xiong, Yunyang
%A Liu, Zechun
%A Wang, Dilin
%A Sun, Fei
%A Li, Meng
%A Pappu, Aasish
%A Oguz, Barlas
%A Abdul-Mageed, Muhammad
%A Lakshmanan, Laks
%A Krishnamoorthi, Raghuraman
%A Chandra, Vikas
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F jawahar-etal-2024-mixture
%X Weight-sharing supernets are crucial for performance estimation in cutting-edge neural architecture search (NAS) frameworks. Despite their ability to generate diverse subnetworks without retraining, the quality of these subnetworks is not guaranteed due to weight sharing. In NLP tasks like machine translation and pre-trained language modeling, there is a significant performance gap between supernet and training from scratch for the same model architecture, necessitating retraining post optimal architecture identification.This study introduces a solution called mixture-of-supernets, a generalized supernet formulation leveraging mixture-of-experts (MoE) to enhance supernet model expressiveness with minimal training overhead. Unlike conventional supernets, this method employs an architecture-based routing mechanism, enabling indirect sharing of model weights among subnetworks. This customization of weights for specific architectures, learned through gradient descent, minimizes retraining time, significantly enhancing training efficiency in NLP. The proposed method attains state-of-the-art (SoTA) performance in NAS for fast machine translation models, exhibiting a superior latency-BLEU tradeoff compared to HAT, the SoTA NAS framework for machine translation. Furthermore, it excels in NAS for building memory-efficient task-agnostic BERT models, surpassing NAS-BERT and AutoDistil across various model sizes. The code can be found at: https://github.com/UBC-NLP/MoS.
%R 10.18653/v1/2024.findings-acl.621
%U https://aclanthology.org/2024.findings-acl.621
%U https://doi.org/10.18653/v1/2024.findings-acl.621
%P 10424-10443
Markdown (Informal)
[Mixture-of-Supernets: Improving Weight-Sharing Supernet Training with Architecture-Routed Mixture-of-Experts](https://aclanthology.org/2024.findings-acl.621) (Jawahar et al., Findings 2024)
ACL
- Ganesh Jawahar, Haichuan Yang, Yunyang Xiong, Zechun Liu, Dilin Wang, Fei Sun, Meng Li, Aasish Pappu, Barlas Oguz, Muhammad Abdul-Mageed, Laks Lakshmanan, Raghuraman Krishnamoorthi, and Vikas Chandra. 2024. Mixture-of-Supernets: Improving Weight-Sharing Supernet Training with Architecture-Routed Mixture-of-Experts. In Findings of the Association for Computational Linguistics: ACL 2024, pages 10424–10443, Bangkok, Thailand. Association for Computational Linguistics.