@inproceedings{yu-etal-2024-onsep,
title = "{ONSEP}: A Novel Online Neural-Symbolic Framework for Event Prediction Based on Large Language Model",
author = "Yu, Xuanqing and
Sun, Wangtao and
Li, Jingwei and
Liu, Kang and
Liu, Chengbao and
Tan, Jie",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.378/",
doi = "10.18653/v1/2024.findings-acl.378",
pages = "6335--6350",
abstract = "In the realm of event prediction, temporal knowledge graph forecasting (TKGF) stands as a pivotal technique. Previous approaches face the challenges of not utilizing experience during testing and relying on a single short-term history, which limits adaptation to evolving data. In this paper, we introduce the Online Neural-Symbolic Event Prediction (ONSEP) framework, which innovates by integrating dynamic causal rule mining (DCRM) and dual history augmented generation (DHAG). DCRM dynamically constructs causal rules from real-time data, allowing for swift adaptation to new causal relationships. In parallel, DHAG merges short-term and long-term historical contexts, leveraging a bi-branch approach to enrich event prediction. Our framework demonstrates notable performance enhancements across diverse datasets, with significant Hit@k (k=1,3,10) improvements, showcasing its ability to augment large language models (LLMs) for event prediction without necessitating extensive retraining. The ONSEP framework not only advances the field of TKGF but also underscores the potential of neural-symbolic approaches in adapting to dynamic data environments."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yu-etal-2024-onsep">
<titleInfo>
<title>ONSEP: A Novel Online Neural-Symbolic Framework for Event Prediction Based on Large Language Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xuanqing</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wangtao</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jingwei</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengbao</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jie</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In the realm of event prediction, temporal knowledge graph forecasting (TKGF) stands as a pivotal technique. Previous approaches face the challenges of not utilizing experience during testing and relying on a single short-term history, which limits adaptation to evolving data. In this paper, we introduce the Online Neural-Symbolic Event Prediction (ONSEP) framework, which innovates by integrating dynamic causal rule mining (DCRM) and dual history augmented generation (DHAG). DCRM dynamically constructs causal rules from real-time data, allowing for swift adaptation to new causal relationships. In parallel, DHAG merges short-term and long-term historical contexts, leveraging a bi-branch approach to enrich event prediction. Our framework demonstrates notable performance enhancements across diverse datasets, with significant Hit@k (k=1,3,10) improvements, showcasing its ability to augment large language models (LLMs) for event prediction without necessitating extensive retraining. The ONSEP framework not only advances the field of TKGF but also underscores the potential of neural-symbolic approaches in adapting to dynamic data environments.</abstract>
<identifier type="citekey">yu-etal-2024-onsep</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.378</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.378/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>6335</start>
<end>6350</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ONSEP: A Novel Online Neural-Symbolic Framework for Event Prediction Based on Large Language Model
%A Yu, Xuanqing
%A Sun, Wangtao
%A Li, Jingwei
%A Liu, Kang
%A Liu, Chengbao
%A Tan, Jie
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F yu-etal-2024-onsep
%X In the realm of event prediction, temporal knowledge graph forecasting (TKGF) stands as a pivotal technique. Previous approaches face the challenges of not utilizing experience during testing and relying on a single short-term history, which limits adaptation to evolving data. In this paper, we introduce the Online Neural-Symbolic Event Prediction (ONSEP) framework, which innovates by integrating dynamic causal rule mining (DCRM) and dual history augmented generation (DHAG). DCRM dynamically constructs causal rules from real-time data, allowing for swift adaptation to new causal relationships. In parallel, DHAG merges short-term and long-term historical contexts, leveraging a bi-branch approach to enrich event prediction. Our framework demonstrates notable performance enhancements across diverse datasets, with significant Hit@k (k=1,3,10) improvements, showcasing its ability to augment large language models (LLMs) for event prediction without necessitating extensive retraining. The ONSEP framework not only advances the field of TKGF but also underscores the potential of neural-symbolic approaches in adapting to dynamic data environments.
%R 10.18653/v1/2024.findings-acl.378
%U https://aclanthology.org/2024.findings-acl.378/
%U https://doi.org/10.18653/v1/2024.findings-acl.378
%P 6335-6350
Markdown (Informal)
[ONSEP: A Novel Online Neural-Symbolic Framework for Event Prediction Based on Large Language Model](https://aclanthology.org/2024.findings-acl.378/) (Yu et al., Findings 2024)
ACL