@inproceedings{pei-etal-2023-abstractive,
title = "Abstractive Open Information Extraction",
author = "Pei, Kevin and
Jindal, Ishan and
Chang, Kevin",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.376/",
doi = "10.18653/v1/2023.emnlp-main.376",
pages = "6146--6158",
abstract = "Open Information Extraction (OpenIE) is a traditional NLP task that extracts structured information from unstructured text to be used for other downstream applications. Traditionally, OpenIE focuses on extracting the surface forms of relations as they appear in the raw text, which we term extractive OpenIE. One of the main drawbacks of this approach is that implicit semantic relations (inferred relations) can not be extracted, compromising the performance of downstream applications. In this paper, we broaden the scope of OpenIE relations from merely the surface form of relations to include inferred relations, which we term abstractive OpenIE. This new task calls for the development of a new abstractive OpenIE training dataset and a baseline neural model that can extract those inferred relations. We also demonstrate the necessity for a new semantics-based metric for evaluating abstractive OpenIE extractions. Via a case study on Complex QA, we demonstrate the effectiveness of abstractive OpenIE."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pei-etal-2023-abstractive">
<titleInfo>
<title>Abstractive Open Information Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Pei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ishan</namePart>
<namePart type="family">Jindal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Open Information Extraction (OpenIE) is a traditional NLP task that extracts structured information from unstructured text to be used for other downstream applications. Traditionally, OpenIE focuses on extracting the surface forms of relations as they appear in the raw text, which we term extractive OpenIE. One of the main drawbacks of this approach is that implicit semantic relations (inferred relations) can not be extracted, compromising the performance of downstream applications. In this paper, we broaden the scope of OpenIE relations from merely the surface form of relations to include inferred relations, which we term abstractive OpenIE. This new task calls for the development of a new abstractive OpenIE training dataset and a baseline neural model that can extract those inferred relations. We also demonstrate the necessity for a new semantics-based metric for evaluating abstractive OpenIE extractions. Via a case study on Complex QA, we demonstrate the effectiveness of abstractive OpenIE.</abstract>
<identifier type="citekey">pei-etal-2023-abstractive</identifier>
<identifier type="doi">10.18653/v1/2023.emnlp-main.376</identifier>
<location>
<url>https://aclanthology.org/2023.emnlp-main.376/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>6146</start>
<end>6158</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Abstractive Open Information Extraction
%A Pei, Kevin
%A Jindal, Ishan
%A Chang, Kevin
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F pei-etal-2023-abstractive
%X Open Information Extraction (OpenIE) is a traditional NLP task that extracts structured information from unstructured text to be used for other downstream applications. Traditionally, OpenIE focuses on extracting the surface forms of relations as they appear in the raw text, which we term extractive OpenIE. One of the main drawbacks of this approach is that implicit semantic relations (inferred relations) can not be extracted, compromising the performance of downstream applications. In this paper, we broaden the scope of OpenIE relations from merely the surface form of relations to include inferred relations, which we term abstractive OpenIE. This new task calls for the development of a new abstractive OpenIE training dataset and a baseline neural model that can extract those inferred relations. We also demonstrate the necessity for a new semantics-based metric for evaluating abstractive OpenIE extractions. Via a case study on Complex QA, we demonstrate the effectiveness of abstractive OpenIE.
%R 10.18653/v1/2023.emnlp-main.376
%U https://aclanthology.org/2023.emnlp-main.376/
%U https://doi.org/10.18653/v1/2023.emnlp-main.376
%P 6146-6158
Markdown (Informal)
[Abstractive Open Information Extraction](https://aclanthology.org/2023.emnlp-main.376/) (Pei et al., EMNLP 2023)
ACL
- Kevin Pei, Ishan Jindal, and Kevin Chang. 2023. Abstractive Open Information Extraction. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 6146–6158, Singapore. Association for Computational Linguistics.