@inproceedings{sim-etal-2023-csiro,
title = "{CSIRO} {D}ata61 Team at {B}io{L}ay{S}umm Task 1: Lay Summarisation of Biomedical Research Articles Using Generative Models",
author = "Sim, Mong Yuan and
Dai, Xiang and
Rybinski, Maciej and
Karimi, Sarvnaz",
editor = "Demner-fushman, Dina and
Ananiadou, Sophia and
Cohen, Kevin",
booktitle = "The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.bionlp-1.68/",
doi = "10.18653/v1/2023.bionlp-1.68",
pages = "629--635",
abstract = "Lay summarisation aims at generating a summary for non-expert audience which allows them to keep updated with latest research in a specific field. Despite the significant advancements made in the field of text summarisation, lay summarisation remains relatively under-explored. We present a comprehensive set of experiments and analysis to investigate the effectiveness of existing pre-trained language models in generating lay summaries. When evaluate our models using a BioNLP Shared Task, BioLaySumm, our submission ranked second for the relevance criteria and third overall among 21 competing teams."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sim-etal-2023-csiro">
<titleInfo>
<title>CSIRO Data61 Team at BioLaySumm Task 1: Lay Summarisation of Biomedical Research Articles Using Generative Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mong</namePart>
<namePart type="given">Yuan</namePart>
<namePart type="family">Sim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="family">Dai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maciej</namePart>
<namePart type="family">Rybinski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sarvnaz</namePart>
<namePart type="family">Karimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Lay summarisation aims at generating a summary for non-expert audience which allows them to keep updated with latest research in a specific field. Despite the significant advancements made in the field of text summarisation, lay summarisation remains relatively under-explored. We present a comprehensive set of experiments and analysis to investigate the effectiveness of existing pre-trained language models in generating lay summaries. When evaluate our models using a BioNLP Shared Task, BioLaySumm, our submission ranked second for the relevance criteria and third overall among 21 competing teams.</abstract>
<identifier type="citekey">sim-etal-2023-csiro</identifier>
<identifier type="doi">10.18653/v1/2023.bionlp-1.68</identifier>
<location>
<url>https://aclanthology.org/2023.bionlp-1.68/</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>629</start>
<end>635</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CSIRO Data61 Team at BioLaySumm Task 1: Lay Summarisation of Biomedical Research Articles Using Generative Models
%A Sim, Mong Yuan
%A Dai, Xiang
%A Rybinski, Maciej
%A Karimi, Sarvnaz
%Y Demner-fushman, Dina
%Y Ananiadou, Sophia
%Y Cohen, Kevin
%S The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F sim-etal-2023-csiro
%X Lay summarisation aims at generating a summary for non-expert audience which allows them to keep updated with latest research in a specific field. Despite the significant advancements made in the field of text summarisation, lay summarisation remains relatively under-explored. We present a comprehensive set of experiments and analysis to investigate the effectiveness of existing pre-trained language models in generating lay summaries. When evaluate our models using a BioNLP Shared Task, BioLaySumm, our submission ranked second for the relevance criteria and third overall among 21 competing teams.
%R 10.18653/v1/2023.bionlp-1.68
%U https://aclanthology.org/2023.bionlp-1.68/
%U https://doi.org/10.18653/v1/2023.bionlp-1.68
%P 629-635
Markdown (Informal)
[CSIRO Data61 Team at BioLaySumm Task 1: Lay Summarisation of Biomedical Research Articles Using Generative Models](https://aclanthology.org/2023.bionlp-1.68/) (Sim et al., BioNLP 2023)
ACL