@inproceedings{baran-etal-2023-classical,
title = "Classical Out-of-Distribution Detection Methods Benchmark in Text Classification Tasks",
author = "Baran, Mateusz and
Baran, Joanna and
W{\'o}jcik, Mateusz and
Zi{\k{e}}ba, Maciej and
Gonczarek, Adam",
editor = "Padmakumar, Vishakh and
Vallejo, Gisela and
Fu, Yao",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-srw.20/",
doi = "10.18653/v1/2023.acl-srw.20",
pages = "119--129",
abstract = "State-of-the-art models can perform well in controlled environments, but they often struggle when presented with out-of-distribution (OOD) examples, making OOD detection a critical component of NLP systems. In this paper, we focus on highlighting the limitations of existing approaches to OOD detection in NLP. Specifically, we evaluated eight OOD detection methods that are easily integrable into existing NLP systems and require no additional OOD data or model modifications. One of our contributions is providing a well-structured research environment that allows for full reproducibility of the results. Additionally, our analysis shows that existing OOD detection methods for NLP tasks are not yet sufficiently sensitive to capture all samples characterized by various types of distributional shifts. Particularly challenging testing scenarios arise in cases of background shift and randomly shuffled word order within in domain texts. This highlights the need for future work to develop more effective OOD detection approaches for the NLP problems, and our work provides a well-defined foundation for further research in this area."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="baran-etal-2023-classical">
<titleInfo>
<title>Classical Out-of-Distribution Detection Methods Benchmark in Text Classification Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mateusz</namePart>
<namePart type="family">Baran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joanna</namePart>
<namePart type="family">Baran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mateusz</namePart>
<namePart type="family">Wójcik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maciej</namePart>
<namePart type="family">Zięba</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Gonczarek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vishakh</namePart>
<namePart type="family">Padmakumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gisela</namePart>
<namePart type="family">Vallejo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yao</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>State-of-the-art models can perform well in controlled environments, but they often struggle when presented with out-of-distribution (OOD) examples, making OOD detection a critical component of NLP systems. In this paper, we focus on highlighting the limitations of existing approaches to OOD detection in NLP. Specifically, we evaluated eight OOD detection methods that are easily integrable into existing NLP systems and require no additional OOD data or model modifications. One of our contributions is providing a well-structured research environment that allows for full reproducibility of the results. Additionally, our analysis shows that existing OOD detection methods for NLP tasks are not yet sufficiently sensitive to capture all samples characterized by various types of distributional shifts. Particularly challenging testing scenarios arise in cases of background shift and randomly shuffled word order within in domain texts. This highlights the need for future work to develop more effective OOD detection approaches for the NLP problems, and our work provides a well-defined foundation for further research in this area.</abstract>
<identifier type="citekey">baran-etal-2023-classical</identifier>
<identifier type="doi">10.18653/v1/2023.acl-srw.20</identifier>
<location>
<url>https://aclanthology.org/2023.acl-srw.20/</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>119</start>
<end>129</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Classical Out-of-Distribution Detection Methods Benchmark in Text Classification Tasks
%A Baran, Mateusz
%A Baran, Joanna
%A Wójcik, Mateusz
%A Zięba, Maciej
%A Gonczarek, Adam
%Y Padmakumar, Vishakh
%Y Vallejo, Gisela
%Y Fu, Yao
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F baran-etal-2023-classical
%X State-of-the-art models can perform well in controlled environments, but they often struggle when presented with out-of-distribution (OOD) examples, making OOD detection a critical component of NLP systems. In this paper, we focus on highlighting the limitations of existing approaches to OOD detection in NLP. Specifically, we evaluated eight OOD detection methods that are easily integrable into existing NLP systems and require no additional OOD data or model modifications. One of our contributions is providing a well-structured research environment that allows for full reproducibility of the results. Additionally, our analysis shows that existing OOD detection methods for NLP tasks are not yet sufficiently sensitive to capture all samples characterized by various types of distributional shifts. Particularly challenging testing scenarios arise in cases of background shift and randomly shuffled word order within in domain texts. This highlights the need for future work to develop more effective OOD detection approaches for the NLP problems, and our work provides a well-defined foundation for further research in this area.
%R 10.18653/v1/2023.acl-srw.20
%U https://aclanthology.org/2023.acl-srw.20/
%U https://doi.org/10.18653/v1/2023.acl-srw.20
%P 119-129
Markdown (Informal)
[Classical Out-of-Distribution Detection Methods Benchmark in Text Classification Tasks](https://aclanthology.org/2023.acl-srw.20/) (Baran et al., ACL 2023)
ACL