@inproceedings{zhang-etal-2023-fine,
title = "Fine-tuning Happens in Tiny Subspaces: Exploring Intrinsic Task-specific Subspaces of Pre-trained Language Models",
author = "Zhang, Zhong and
Liu, Bang and
Shao, Junming",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.95/",
doi = "10.18653/v1/2023.acl-long.95",
pages = "1701--1713",
abstract = "Pre-trained language models (PLMs) are known to be overly parameterized and have significant redundancy, indicating a small degree of freedom of the PLMs. Motivated by the observation, in this paper, we study the problem of re-parameterizing and fine-tuning PLMs from a new perspective: Discovery of intrinsic task-specific subspace. Specifically, by exploiting the dynamics of the fine-tuning process for a given task, the parameter optimization trajectory is learned to uncover its intrinsic task-specific subspace. A key finding is that PLMs can be effectively fine-tuned in the subspace with a small number of free parameters. Beyond, we observe some outlier dimensions emerging during fine-tuning in the subspace. Disabling these dimensions degrades the model performance significantly. This suggests that these dimensions are crucial to induce task-specific knowledge to downstream tasks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2023-fine">
<titleInfo>
<title>Fine-tuning Happens in Tiny Subspaces: Exploring Intrinsic Task-specific Subspaces of Pre-trained Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhong</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junming</namePart>
<namePart type="family">Shao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Pre-trained language models (PLMs) are known to be overly parameterized and have significant redundancy, indicating a small degree of freedom of the PLMs. Motivated by the observation, in this paper, we study the problem of re-parameterizing and fine-tuning PLMs from a new perspective: Discovery of intrinsic task-specific subspace. Specifically, by exploiting the dynamics of the fine-tuning process for a given task, the parameter optimization trajectory is learned to uncover its intrinsic task-specific subspace. A key finding is that PLMs can be effectively fine-tuned in the subspace with a small number of free parameters. Beyond, we observe some outlier dimensions emerging during fine-tuning in the subspace. Disabling these dimensions degrades the model performance significantly. This suggests that these dimensions are crucial to induce task-specific knowledge to downstream tasks.</abstract>
<identifier type="citekey">zhang-etal-2023-fine</identifier>
<identifier type="doi">10.18653/v1/2023.acl-long.95</identifier>
<location>
<url>https://aclanthology.org/2023.acl-long.95/</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>1701</start>
<end>1713</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fine-tuning Happens in Tiny Subspaces: Exploring Intrinsic Task-specific Subspaces of Pre-trained Language Models
%A Zhang, Zhong
%A Liu, Bang
%A Shao, Junming
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F zhang-etal-2023-fine
%X Pre-trained language models (PLMs) are known to be overly parameterized and have significant redundancy, indicating a small degree of freedom of the PLMs. Motivated by the observation, in this paper, we study the problem of re-parameterizing and fine-tuning PLMs from a new perspective: Discovery of intrinsic task-specific subspace. Specifically, by exploiting the dynamics of the fine-tuning process for a given task, the parameter optimization trajectory is learned to uncover its intrinsic task-specific subspace. A key finding is that PLMs can be effectively fine-tuned in the subspace with a small number of free parameters. Beyond, we observe some outlier dimensions emerging during fine-tuning in the subspace. Disabling these dimensions degrades the model performance significantly. This suggests that these dimensions are crucial to induce task-specific knowledge to downstream tasks.
%R 10.18653/v1/2023.acl-long.95
%U https://aclanthology.org/2023.acl-long.95/
%U https://doi.org/10.18653/v1/2023.acl-long.95
%P 1701-1713
Markdown (Informal)
[Fine-tuning Happens in Tiny Subspaces: Exploring Intrinsic Task-specific Subspaces of Pre-trained Language Models](https://aclanthology.org/2023.acl-long.95/) (Zhang et al., ACL 2023)
ACL