@inproceedings{shimorina-etal-2022-knowledge,
title = "Knowledge Extraction From Texts Based on {W}ikidata",
author = "Shimorina, Anastasia and
Heinecke, Johannes and
Herledan, Fr{\'e}d{\'e}ric",
editor = "Loukina, Anastassia and
Gangadharaiah, Rashmi and
Min, Bonan",
booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track",
month = jul,
year = "2022",
address = "Hybrid: Seattle, Washington + Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.naacl-industry.33/",
doi = "10.18653/v1/2022.naacl-industry.33",
pages = "297--304",
abstract = "This paper presents an effort within our company of developing knowledge extraction pipeline for English, which can be further used for constructing an entreprise-specific knowledge base. We present a system consisting of entity detection and linking, coreference resolution, and relation extraction based on the Wikidata schema. We highlight existing challenges of knowledge extraction by evaluating the deployed pipeline on real-world data. We also make available a database, which can serve as a new resource for sentential relation extraction, and we underline the importance of having balanced data for training classification models."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shimorina-etal-2022-knowledge">
<titleInfo>
<title>Knowledge Extraction From Texts Based on Wikidata</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anastasia</namePart>
<namePart type="family">Shimorina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johannes</namePart>
<namePart type="family">Heinecke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Herledan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anastassia</namePart>
<namePart type="family">Loukina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Gangadharaiah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bonan</namePart>
<namePart type="family">Min</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hybrid: Seattle, Washington + Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents an effort within our company of developing knowledge extraction pipeline for English, which can be further used for constructing an entreprise-specific knowledge base. We present a system consisting of entity detection and linking, coreference resolution, and relation extraction based on the Wikidata schema. We highlight existing challenges of knowledge extraction by evaluating the deployed pipeline on real-world data. We also make available a database, which can serve as a new resource for sentential relation extraction, and we underline the importance of having balanced data for training classification models.</abstract>
<identifier type="citekey">shimorina-etal-2022-knowledge</identifier>
<identifier type="doi">10.18653/v1/2022.naacl-industry.33</identifier>
<location>
<url>https://aclanthology.org/2022.naacl-industry.33/</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>297</start>
<end>304</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Knowledge Extraction From Texts Based on Wikidata
%A Shimorina, Anastasia
%A Heinecke, Johannes
%A Herledan, Frédéric
%Y Loukina, Anastassia
%Y Gangadharaiah, Rashmi
%Y Min, Bonan
%S Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track
%D 2022
%8 July
%I Association for Computational Linguistics
%C Hybrid: Seattle, Washington + Online
%F shimorina-etal-2022-knowledge
%X This paper presents an effort within our company of developing knowledge extraction pipeline for English, which can be further used for constructing an entreprise-specific knowledge base. We present a system consisting of entity detection and linking, coreference resolution, and relation extraction based on the Wikidata schema. We highlight existing challenges of knowledge extraction by evaluating the deployed pipeline on real-world data. We also make available a database, which can serve as a new resource for sentential relation extraction, and we underline the importance of having balanced data for training classification models.
%R 10.18653/v1/2022.naacl-industry.33
%U https://aclanthology.org/2022.naacl-industry.33/
%U https://doi.org/10.18653/v1/2022.naacl-industry.33
%P 297-304
Markdown (Informal)
[Knowledge Extraction From Texts Based on Wikidata](https://aclanthology.org/2022.naacl-industry.33/) (Shimorina et al., NAACL 2022)
ACL
- Anastasia Shimorina, Johannes Heinecke, and Frédéric Herledan. 2022. Knowledge Extraction From Texts Based on Wikidata. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track, pages 297–304, Hybrid: Seattle, Washington + Online. Association for Computational Linguistics.