@inproceedings{duquenne-etal-2022-modules,
title = "{T}-Modules: Translation Modules for Zero-Shot Cross-Modal Machine Translation",
author = "Duquenne, Paul-Ambroise and
Gong, Hongyu and
Sagot, Beno{\^i}t and
Schwenk, Holger",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.391/",
doi = "10.18653/v1/2022.emnlp-main.391",
pages = "5794--5806",
abstract = "We present a new approach to perform zero-shot cross-modal transfer between speech and text for translation tasks. Multilingual speech and text are encoded in a joint fixed-size representation space. Then, we compare different approaches to decode these multimodal and multilingual fixed-size representations, enabling zero-shot translation between languages and modalities. All our models are trained without the need of cross-modal labeled translation data.Despite a fixed-size representation, we achieve very competitive results on several text and speech translation tasks. In particular, we significantly improve the state-of-the-art for zero-shot speech translation on Must-C. Incorporating a speech decoder in our framework, we introduce the first results for zero-shot direct speech-to-speech and text-to-speech translation."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="duquenne-etal-2022-modules">
<titleInfo>
<title>T-Modules: Translation Modules for Zero-Shot Cross-Modal Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Paul-Ambroise</namePart>
<namePart type="family">Duquenne</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongyu</namePart>
<namePart type="family">Gong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benoît</namePart>
<namePart type="family">Sagot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Holger</namePart>
<namePart type="family">Schwenk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a new approach to perform zero-shot cross-modal transfer between speech and text for translation tasks. Multilingual speech and text are encoded in a joint fixed-size representation space. Then, we compare different approaches to decode these multimodal and multilingual fixed-size representations, enabling zero-shot translation between languages and modalities. All our models are trained without the need of cross-modal labeled translation data.Despite a fixed-size representation, we achieve very competitive results on several text and speech translation tasks. In particular, we significantly improve the state-of-the-art for zero-shot speech translation on Must-C. Incorporating a speech decoder in our framework, we introduce the first results for zero-shot direct speech-to-speech and text-to-speech translation.</abstract>
<identifier type="citekey">duquenne-etal-2022-modules</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-main.391</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-main.391/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>5794</start>
<end>5806</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T T-Modules: Translation Modules for Zero-Shot Cross-Modal Machine Translation
%A Duquenne, Paul-Ambroise
%A Gong, Hongyu
%A Sagot, Benoît
%A Schwenk, Holger
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F duquenne-etal-2022-modules
%X We present a new approach to perform zero-shot cross-modal transfer between speech and text for translation tasks. Multilingual speech and text are encoded in a joint fixed-size representation space. Then, we compare different approaches to decode these multimodal and multilingual fixed-size representations, enabling zero-shot translation between languages and modalities. All our models are trained without the need of cross-modal labeled translation data.Despite a fixed-size representation, we achieve very competitive results on several text and speech translation tasks. In particular, we significantly improve the state-of-the-art for zero-shot speech translation on Must-C. Incorporating a speech decoder in our framework, we introduce the first results for zero-shot direct speech-to-speech and text-to-speech translation.
%R 10.18653/v1/2022.emnlp-main.391
%U https://aclanthology.org/2022.emnlp-main.391/
%U https://doi.org/10.18653/v1/2022.emnlp-main.391
%P 5794-5806
Markdown (Informal)
[T-Modules: Translation Modules for Zero-Shot Cross-Modal Machine Translation](https://aclanthology.org/2022.emnlp-main.391/) (Duquenne et al., EMNLP 2022)
ACL