@inproceedings{syed-etal-2022-summary,
title = "{SUMMARY} {WORKBENCH}: Unifying Application and Evaluation of Text Summarization Models",
author = "Syed, Shahbaz and
Schwabe, Dominik and
Potthast, Martin",
editor = "Che, Wanxiang and
Shutova, Ekaterina",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = dec,
year = "2022",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-demos.23/",
doi = "10.18653/v1/2022.emnlp-demos.23",
pages = "232--241",
abstract = "This paper presents Summary Workbench, a new tool for developing and evaluating text summarization models. New models and evaluation measures can be easily integrated as Docker-based plugins, allowing to examine the quality of their summaries against any input and to evaluate them using various evaluation measures. Visual analyses combining multiple measures provide insights into the models' strengths and weaknesses. The tool is hosted at \url{https://tldr.demo.webis.de} and also supports local deployment for private resources."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="syed-etal-2022-summary">
<titleInfo>
<title>SUMMARY WORKBENCH: Unifying Application and Evaluation of Text Summarization Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shahbaz</namePart>
<namePart type="family">Syed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dominik</namePart>
<namePart type="family">Schwabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Potthast</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents Summary Workbench, a new tool for developing and evaluating text summarization models. New models and evaluation measures can be easily integrated as Docker-based plugins, allowing to examine the quality of their summaries against any input and to evaluate them using various evaluation measures. Visual analyses combining multiple measures provide insights into the models’ strengths and weaknesses. The tool is hosted at https://tldr.demo.webis.de and also supports local deployment for private resources.</abstract>
<identifier type="citekey">syed-etal-2022-summary</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-demos.23</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-demos.23/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>232</start>
<end>241</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SUMMARY WORKBENCH: Unifying Application and Evaluation of Text Summarization Models
%A Syed, Shahbaz
%A Schwabe, Dominik
%A Potthast, Martin
%Y Che, Wanxiang
%Y Shutova, Ekaterina
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F syed-etal-2022-summary
%X This paper presents Summary Workbench, a new tool for developing and evaluating text summarization models. New models and evaluation measures can be easily integrated as Docker-based plugins, allowing to examine the quality of their summaries against any input and to evaluate them using various evaluation measures. Visual analyses combining multiple measures provide insights into the models’ strengths and weaknesses. The tool is hosted at https://tldr.demo.webis.de and also supports local deployment for private resources.
%R 10.18653/v1/2022.emnlp-demos.23
%U https://aclanthology.org/2022.emnlp-demos.23/
%U https://doi.org/10.18653/v1/2022.emnlp-demos.23
%P 232-241
Markdown (Informal)
[SUMMARY WORKBENCH: Unifying Application and Evaluation of Text Summarization Models](https://aclanthology.org/2022.emnlp-demos.23/) (Syed et al., EMNLP 2022)
ACL