@inproceedings{bozhanova-etal-2021-predicting,
title = "Predicting the Factuality of Reporting of News Media Using Observations about User Attention in Their {Y}ou{T}ube Channels",
author = "Bozhanova, Krasimira and
Dinkov, Yoan and
Koychev, Ivan and
Castaldo, Maria and
Venturini, Tommaso and
Nakov, Preslav",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)",
month = sep,
year = "2021",
address = "Held Online",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/2021.ranlp-1.22/",
pages = "182--189",
abstract = "We propose a novel framework for predicting the factuality of reporting of news media outlets by studying the user attention cycles in their YouTube channels. In particular, we design a rich set of features derived from the temporal evolution of the number of views, likes, dislikes, and comments for a video, which we then aggregate to the channel level. We develop and release a dataset for the task, containing observations of user attention on YouTube channels for 489 news media. Our experiments demonstrate both complementarity and sizable improvements over state-of-the-art textual representations."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bozhanova-etal-2021-predicting">
<titleInfo>
<title>Predicting the Factuality of Reporting of News Media Using Observations about User Attention in Their YouTube Channels</title>
</titleInfo>
<name type="personal">
<namePart type="given">Krasimira</namePart>
<namePart type="family">Bozhanova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoan</namePart>
<namePart type="family">Dinkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Koychev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Castaldo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tommaso</namePart>
<namePart type="family">Venturini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Held Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a novel framework for predicting the factuality of reporting of news media outlets by studying the user attention cycles in their YouTube channels. In particular, we design a rich set of features derived from the temporal evolution of the number of views, likes, dislikes, and comments for a video, which we then aggregate to the channel level. We develop and release a dataset for the task, containing observations of user attention on YouTube channels for 489 news media. Our experiments demonstrate both complementarity and sizable improvements over state-of-the-art textual representations.</abstract>
<identifier type="citekey">bozhanova-etal-2021-predicting</identifier>
<location>
<url>https://aclanthology.org/2021.ranlp-1.22/</url>
</location>
<part>
<date>2021-09</date>
<extent unit="page">
<start>182</start>
<end>189</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Predicting the Factuality of Reporting of News Media Using Observations about User Attention in Their YouTube Channels
%A Bozhanova, Krasimira
%A Dinkov, Yoan
%A Koychev, Ivan
%A Castaldo, Maria
%A Venturini, Tommaso
%A Nakov, Preslav
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)
%D 2021
%8 September
%I INCOMA Ltd.
%C Held Online
%F bozhanova-etal-2021-predicting
%X We propose a novel framework for predicting the factuality of reporting of news media outlets by studying the user attention cycles in their YouTube channels. In particular, we design a rich set of features derived from the temporal evolution of the number of views, likes, dislikes, and comments for a video, which we then aggregate to the channel level. We develop and release a dataset for the task, containing observations of user attention on YouTube channels for 489 news media. Our experiments demonstrate both complementarity and sizable improvements over state-of-the-art textual representations.
%U https://aclanthology.org/2021.ranlp-1.22/
%P 182-189
Markdown (Informal)
[Predicting the Factuality of Reporting of News Media Using Observations about User Attention in Their YouTube Channels](https://aclanthology.org/2021.ranlp-1.22/) (Bozhanova et al., RANLP 2021)
ACL