@inproceedings{shakeri-etal-2021-towards,
title = "Towards Zero-Shot Multilingual Synthetic Question and Answer Generation for Cross-Lingual Reading Comprehension",
author = "Shakeri, Siamak and
Constant, Noah and
Kale, Mihir and
Xue, Linting",
editor = "Belz, Anya and
Fan, Angela and
Reiter, Ehud and
Sripada, Yaji",
booktitle = "Proceedings of the 14th International Conference on Natural Language Generation",
month = aug,
year = "2021",
address = "Aberdeen, Scotland, UK",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.inlg-1.4/",
doi = "10.18653/v1/2021.inlg-1.4",
pages = "35--45",
abstract = "We propose a simple method to generate multilingual question and answer pairs on a large scale through the use of a single generative model. These synthetic samples can be used to improve the zero-shot performance of multilingual QA models on target languages. Our proposed multi-task training of the generative model only requires labeled training samples in English, thus removing the need for such samples in the target languages, making it applicable to far more languages than those with labeled data. Human evaluations indicate the majority of such samples are grammatically correct and sensible. Experimental results show our proposed approach can achieve large gains on the XQuAD dataset, reducing the gap between zero-shot and supervised performance of smaller QA models on various languages."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shakeri-etal-2021-towards">
<titleInfo>
<title>Towards Zero-Shot Multilingual Synthetic Question and Answer Generation for Cross-Lingual Reading Comprehension</title>
</titleInfo>
<name type="personal">
<namePart type="given">Siamak</namePart>
<namePart type="family">Shakeri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Noah</namePart>
<namePart type="family">Constant</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mihir</namePart>
<namePart type="family">Kale</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Linting</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 14th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anya</namePart>
<namePart type="family">Belz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Angela</namePart>
<namePart type="family">Fan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ehud</namePart>
<namePart type="family">Reiter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yaji</namePart>
<namePart type="family">Sripada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Aberdeen, Scotland, UK</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a simple method to generate multilingual question and answer pairs on a large scale through the use of a single generative model. These synthetic samples can be used to improve the zero-shot performance of multilingual QA models on target languages. Our proposed multi-task training of the generative model only requires labeled training samples in English, thus removing the need for such samples in the target languages, making it applicable to far more languages than those with labeled data. Human evaluations indicate the majority of such samples are grammatically correct and sensible. Experimental results show our proposed approach can achieve large gains on the XQuAD dataset, reducing the gap between zero-shot and supervised performance of smaller QA models on various languages.</abstract>
<identifier type="citekey">shakeri-etal-2021-towards</identifier>
<identifier type="doi">10.18653/v1/2021.inlg-1.4</identifier>
<location>
<url>https://aclanthology.org/2021.inlg-1.4/</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>35</start>
<end>45</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Zero-Shot Multilingual Synthetic Question and Answer Generation for Cross-Lingual Reading Comprehension
%A Shakeri, Siamak
%A Constant, Noah
%A Kale, Mihir
%A Xue, Linting
%Y Belz, Anya
%Y Fan, Angela
%Y Reiter, Ehud
%Y Sripada, Yaji
%S Proceedings of the 14th International Conference on Natural Language Generation
%D 2021
%8 August
%I Association for Computational Linguistics
%C Aberdeen, Scotland, UK
%F shakeri-etal-2021-towards
%X We propose a simple method to generate multilingual question and answer pairs on a large scale through the use of a single generative model. These synthetic samples can be used to improve the zero-shot performance of multilingual QA models on target languages. Our proposed multi-task training of the generative model only requires labeled training samples in English, thus removing the need for such samples in the target languages, making it applicable to far more languages than those with labeled data. Human evaluations indicate the majority of such samples are grammatically correct and sensible. Experimental results show our proposed approach can achieve large gains on the XQuAD dataset, reducing the gap between zero-shot and supervised performance of smaller QA models on various languages.
%R 10.18653/v1/2021.inlg-1.4
%U https://aclanthology.org/2021.inlg-1.4/
%U https://doi.org/10.18653/v1/2021.inlg-1.4
%P 35-45
Markdown (Informal)
[Towards Zero-Shot Multilingual Synthetic Question and Answer Generation for Cross-Lingual Reading Comprehension](https://aclanthology.org/2021.inlg-1.4/) (Shakeri et al., INLG 2021)
ACL