@inproceedings{srivastava-singh-2021-quality,
title = "Quality Evaluation of the Low-Resource Synthetically Generated Code-Mixed {H}inglish Text",
author = "Srivastava, Vivek and
Singh, Mayank",
editor = "Belz, Anya and
Fan, Angela and
Reiter, Ehud and
Sripada, Yaji",
booktitle = "Proceedings of the 14th International Conference on Natural Language Generation",
month = aug,
year = "2021",
address = "Aberdeen, Scotland, UK",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.inlg-1.34/",
doi = "10.18653/v1/2021.inlg-1.34",
pages = "314--319",
abstract = "In this shared task, we seek the participating teams to investigate the factors influencing the quality of the code-mixed text generation systems. We synthetically generate code-mixed Hinglish sentences using two distinct approaches and employ human annotators to rate the generation quality. We propose two subtasks, quality rating prediction and annotators' disagreement prediction of the synthetic Hinglish dataset. The proposed subtasks will put forward the reasoning and explanation of the factors influencing the quality and human perception of the code-mixed text."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="srivastava-singh-2021-quality">
<titleInfo>
<title>Quality Evaluation of the Low-Resource Synthetically Generated Code-Mixed Hinglish Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srivastava</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mayank</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 14th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anya</namePart>
<namePart type="family">Belz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Angela</namePart>
<namePart type="family">Fan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ehud</namePart>
<namePart type="family">Reiter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yaji</namePart>
<namePart type="family">Sripada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Aberdeen, Scotland, UK</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this shared task, we seek the participating teams to investigate the factors influencing the quality of the code-mixed text generation systems. We synthetically generate code-mixed Hinglish sentences using two distinct approaches and employ human annotators to rate the generation quality. We propose two subtasks, quality rating prediction and annotators’ disagreement prediction of the synthetic Hinglish dataset. The proposed subtasks will put forward the reasoning and explanation of the factors influencing the quality and human perception of the code-mixed text.</abstract>
<identifier type="citekey">srivastava-singh-2021-quality</identifier>
<identifier type="doi">10.18653/v1/2021.inlg-1.34</identifier>
<location>
<url>https://aclanthology.org/2021.inlg-1.34/</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>314</start>
<end>319</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Quality Evaluation of the Low-Resource Synthetically Generated Code-Mixed Hinglish Text
%A Srivastava, Vivek
%A Singh, Mayank
%Y Belz, Anya
%Y Fan, Angela
%Y Reiter, Ehud
%Y Sripada, Yaji
%S Proceedings of the 14th International Conference on Natural Language Generation
%D 2021
%8 August
%I Association for Computational Linguistics
%C Aberdeen, Scotland, UK
%F srivastava-singh-2021-quality
%X In this shared task, we seek the participating teams to investigate the factors influencing the quality of the code-mixed text generation systems. We synthetically generate code-mixed Hinglish sentences using two distinct approaches and employ human annotators to rate the generation quality. We propose two subtasks, quality rating prediction and annotators’ disagreement prediction of the synthetic Hinglish dataset. The proposed subtasks will put forward the reasoning and explanation of the factors influencing the quality and human perception of the code-mixed text.
%R 10.18653/v1/2021.inlg-1.34
%U https://aclanthology.org/2021.inlg-1.34/
%U https://doi.org/10.18653/v1/2021.inlg-1.34
%P 314-319
Markdown (Informal)
[Quality Evaluation of the Low-Resource Synthetically Generated Code-Mixed Hinglish Text](https://aclanthology.org/2021.inlg-1.34/) (Srivastava & Singh, INLG 2021)
ACL