@inproceedings{kasner-etal-2021-text,
title = "Text-in-Context: Token-Level Error Detection for Table-to-Text Generation",
author = "Kasner, Zden{\v{e}}k and
Mille, Simon and
Du{\v{s}}ek, Ond{\v{r}}ej",
editor = "Belz, Anya and
Fan, Angela and
Reiter, Ehud and
Sripada, Yaji",
booktitle = "Proceedings of the 14th International Conference on Natural Language Generation",
month = aug,
year = "2021",
address = "Aberdeen, Scotland, UK",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.inlg-1.25/",
doi = "10.18653/v1/2021.inlg-1.25",
pages = "259--265",
abstract = "We present our Charles-UPF submission for the Shared Task on Evaluating Accuracy in Generated Texts at INLG 2021. Our system can detect the errors automatically using a combination of a rule-based natural language generation (NLG) system and pretrained language models (LMs). We first utilize a rule-based NLG system to generate sentences with facts that can be derived from the input. For each sentence we evaluate, we select a subset of facts which are relevant by measuring semantic similarity to the sentence in question. Finally, we finetune a pretrained language model on annotated data along with the relevant facts for fine-grained error detection. On the test set, we achieve 69{\%} recall and 75{\%} precision with a model trained on a mixture of human-annotated and synthetic data."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kasner-etal-2021-text">
<titleInfo>
<title>Text-in-Context: Token-Level Error Detection for Table-to-Text Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zdeněk</namePart>
<namePart type="family">Kasner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Mille</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondřej</namePart>
<namePart type="family">Dušek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 14th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anya</namePart>
<namePart type="family">Belz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Angela</namePart>
<namePart type="family">Fan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ehud</namePart>
<namePart type="family">Reiter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yaji</namePart>
<namePart type="family">Sripada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Aberdeen, Scotland, UK</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present our Charles-UPF submission for the Shared Task on Evaluating Accuracy in Generated Texts at INLG 2021. Our system can detect the errors automatically using a combination of a rule-based natural language generation (NLG) system and pretrained language models (LMs). We first utilize a rule-based NLG system to generate sentences with facts that can be derived from the input. For each sentence we evaluate, we select a subset of facts which are relevant by measuring semantic similarity to the sentence in question. Finally, we finetune a pretrained language model on annotated data along with the relevant facts for fine-grained error detection. On the test set, we achieve 69% recall and 75% precision with a model trained on a mixture of human-annotated and synthetic data.</abstract>
<identifier type="citekey">kasner-etal-2021-text</identifier>
<identifier type="doi">10.18653/v1/2021.inlg-1.25</identifier>
<location>
<url>https://aclanthology.org/2021.inlg-1.25/</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>259</start>
<end>265</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Text-in-Context: Token-Level Error Detection for Table-to-Text Generation
%A Kasner, Zdeněk
%A Mille, Simon
%A Dušek, Ondřej
%Y Belz, Anya
%Y Fan, Angela
%Y Reiter, Ehud
%Y Sripada, Yaji
%S Proceedings of the 14th International Conference on Natural Language Generation
%D 2021
%8 August
%I Association for Computational Linguistics
%C Aberdeen, Scotland, UK
%F kasner-etal-2021-text
%X We present our Charles-UPF submission for the Shared Task on Evaluating Accuracy in Generated Texts at INLG 2021. Our system can detect the errors automatically using a combination of a rule-based natural language generation (NLG) system and pretrained language models (LMs). We first utilize a rule-based NLG system to generate sentences with facts that can be derived from the input. For each sentence we evaluate, we select a subset of facts which are relevant by measuring semantic similarity to the sentence in question. Finally, we finetune a pretrained language model on annotated data along with the relevant facts for fine-grained error detection. On the test set, we achieve 69% recall and 75% precision with a model trained on a mixture of human-annotated and synthetic data.
%R 10.18653/v1/2021.inlg-1.25
%U https://aclanthology.org/2021.inlg-1.25/
%U https://doi.org/10.18653/v1/2021.inlg-1.25
%P 259-265
Markdown (Informal)
[Text-in-Context: Token-Level Error Detection for Table-to-Text Generation](https://aclanthology.org/2021.inlg-1.25/) (Kasner et al., INLG 2021)
ACL