@inproceedings{casula-etal-2020-fbk,
title = "{FBK}-{DH} at {S}em{E}val-2020 Task 12: Using Multi-channel {BERT} for Multilingual Offensive Language Detection",
author = "Casula, Camilla and
Palmero Aprosio, Alessio and
Menini, Stefano and
Tonelli, Sara",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.201/",
doi = "10.18653/v1/2020.semeval-1.201",
pages = "1539--1545",
abstract = "In this paper we present our submission to sub-task A at SemEval 2020 Task 12: Multilingual Offensive Language Identification in Social Media (OffensEval2). For Danish, Turkish, Arabic and Greek, we develop an architecture based on transfer learning and relying on a two-channel BERT model, in which the English BERT and the multilingual one are combined after creating a machine-translated parallel corpus for each language in the task. For English, instead, we adopt a more standard, single-channel approach. We find that, in a multilingual scenario, with some languages having small training data, using parallel BERT models with machine translated data can give systems more stability, especially when dealing with noisy data. The fact that machine translation on social media data may not be perfect does not hurt the overall classification performance."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="casula-etal-2020-fbk">
<titleInfo>
<title>FBK-DH at SemEval-2020 Task 12: Using Multi-channel BERT for Multilingual Offensive Language Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Camilla</namePart>
<namePart type="family">Casula</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessio</namePart>
<namePart type="family">Palmero Aprosio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefano</namePart>
<namePart type="family">Menini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Tonelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we present our submission to sub-task A at SemEval 2020 Task 12: Multilingual Offensive Language Identification in Social Media (OffensEval2). For Danish, Turkish, Arabic and Greek, we develop an architecture based on transfer learning and relying on a two-channel BERT model, in which the English BERT and the multilingual one are combined after creating a machine-translated parallel corpus for each language in the task. For English, instead, we adopt a more standard, single-channel approach. We find that, in a multilingual scenario, with some languages having small training data, using parallel BERT models with machine translated data can give systems more stability, especially when dealing with noisy data. The fact that machine translation on social media data may not be perfect does not hurt the overall classification performance.</abstract>
<identifier type="citekey">casula-etal-2020-fbk</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.201</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.201/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>1539</start>
<end>1545</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T FBK-DH at SemEval-2020 Task 12: Using Multi-channel BERT for Multilingual Offensive Language Detection
%A Casula, Camilla
%A Palmero Aprosio, Alessio
%A Menini, Stefano
%A Tonelli, Sara
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F casula-etal-2020-fbk
%X In this paper we present our submission to sub-task A at SemEval 2020 Task 12: Multilingual Offensive Language Identification in Social Media (OffensEval2). For Danish, Turkish, Arabic and Greek, we develop an architecture based on transfer learning and relying on a two-channel BERT model, in which the English BERT and the multilingual one are combined after creating a machine-translated parallel corpus for each language in the task. For English, instead, we adopt a more standard, single-channel approach. We find that, in a multilingual scenario, with some languages having small training data, using parallel BERT models with machine translated data can give systems more stability, especially when dealing with noisy data. The fact that machine translation on social media data may not be perfect does not hurt the overall classification performance.
%R 10.18653/v1/2020.semeval-1.201
%U https://aclanthology.org/2020.semeval-1.201/
%U https://doi.org/10.18653/v1/2020.semeval-1.201
%P 1539-1545
Markdown (Informal)
[FBK-DH at SemEval-2020 Task 12: Using Multi-channel BERT for Multilingual Offensive Language Detection](https://aclanthology.org/2020.semeval-1.201/) (Casula et al., SemEval 2020)
ACL